Missing question: <span>Assume a density of 10.35 g/cm3 for Ag, A(Ag) = 107.87 g/mol.
N(Ag) = Na </span>· d(Ag) ÷ A(Ag).
N(Ag) = 6,023·10²³ atoms/mol · 10,35 g/cm³ · 10⁶ cm³/m³ ÷ 107,87 g/mol.
N(Ag) = 5,78·10²⁸ atoms/mol.
Nv = 5,78·10²⁸ atoms/mol · 5·10⁻⁵.
Nv = 2,89·10²².
Answer: Except for gamma decay or internal conversion from a nuclear excited state, the decay is a nuclear transmutation resulting in a daughter containing a different number of protons or neutrons (or both). When the number of protons changes, an atom of a different chemical element is created.
Explanation:
These gases all have similar properties under standard conditions: they are all odorless, colorless, monatomic gases with very low chemical reactivity. The six noble gases that occur naturally are helium (He), Neon (Ne), Argon (Ar), Krypton (Kr), Xenon (Xe), and Radon (Rn).
Answer: the electric charge
Explanation:
Answer:
The correct answer is "Secondary active transport".
Explanation:
Secondary active transport is a form of across the membrane transport that involves a transporter protein catalyzing the movement of an ion down its electrochemical gradient to allow the movement of another molecule or ion uphill to its concentration/electrochemical gradient. In this example, the transporter protein (antiporter), move 3 Na⁺ into the cell in exchange for one Ca⁺⁺ leaving the cell. The 3 Na⁺ are the ions moved down its electrochemical gradient and the one Ca⁺⁺ is the ion moved uphill its electrochemical gradient, because Na+ and Ca⁺⁺are more concentrated in the solution than inside the cell. Therefore, this scenario is an example of secondary active transport.