Answer:
1.25 M HCO₃⁻ / 1.25 M CO₃²⁻
Explanation:
Buffer capacity refers to the amount of a strong acid or base required per liter of the buffer to change its pH by one. This amount is directly related to the concentration of the conjugate acid-base pair in the buffer since the buffer pair neutralizes the strong acid or base.
Thus, the highest buffer capacity is found in the solution that has the highest concentration of the conjugate acid-base pair, which is 1.25 M HCO₃⁻ / 1.25 M CO₃²⁻
.
The solution before dilution and after dilution contains same number of moles, and water is added for dilution.
Option B
<h3><u>Explanation:</u></h3>
Suppose before dilution, the solution contains x moles of KCl in Y liter of water. Now as the concentration got halved, then the solution contains x moles of KCl in 2Y kiters of solution. So the number of moles of KCl in the solution remained constant.
Again, as the solution is diluted to half of the concentration, water must have been added with the solution to make it dilute.
Because on both of them you are typing/writing something.
Answer:
e) The activation energy of the reverse reaction is greater than that of the forward reaction.
Explanation:
- Activation energy is the minimum amount of energy that is required by the reactants to start a reaction.
- An exothermic reaction is a reaction that releases heat energy to the surrounding while an endothermic reactions is a reaction that absorbs heat from the surrounding.
- <em><u>In reversible reactions, when the forward reaction is exothermic it means the reverse reaction will be endothermic, therefore the reverse reaction will have a higher activation energy than the forward reaction.</u></em> The activation energy of the reverse reaction will be the sum of the enthalpy and the activation energy of the forward reaction.