Answer:
Star A is brighter than Star B by a factor of 2754.22
Explanation:
Lets assume,
the magnitude of star A = m₁ = 1
the magnitude of star B = m₂ = 9.6
the apparent brightness of star A and star B are b₁ and b₂ respectively
Then, relation between the difference of magnitudes and apparent brightness of two stars are related as give below: 
The current magnitude scale followed was formalized by Sir Norman Pogson in 1856. On this scale a magnitude 1 star is 2.512 times brighter than magnitude 2 star. A magnitude 2 star is 2.512 time brighter than a magnitude 3 star. That means a magnitude 1 star is (2.512x2.512) brighter than magnitude 3 bright star.
We need to find the factor by which star A is brighter than star B. Using the equation given above,



Thus,

It means star A is 2754.22 time brighter than Star B.
Answer:
3rd order polynomial
Explanation:
Given that the increase in the order of the polynomial the error between the curve fit and measured data will decreases hence :
The polynomial order that is best to use is the 3rd order polynomial, this is because using a 3rd order polynomial will produce a less variance and a low Bias
Answer:
Gravitational Potential Energy
Explanation:
a ball is held rest at the top of hill
gravitational potential energy will store due to its height
it. and body will start move downward and its potential energy will convert into kinetic energy due to motion of body
at the ground level it will stop and potential energy will became zero and kinetic energy get convert into internal energy due to collisions
Answer:
<h2><u>Constant</u></h2>
Explanation:
Please don't comment in this question's comment box
<h2>Thanks</h2>
Answer
given,
wavelength of light in air = 700 nm
Wavelength of light in water = 530 nm
We know that speed of light changes when it moves from one medium to another.
And the frequency of the wavelength does not changes if the medium changes.
we also know that,
v = ν λ
From the above equation we can say that if frequency is constant so, with the change in velocity changes wavelength will also change.
Hence, wavelength is the property of the wave which determines color.