Dependent variable is your answer.
Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.
Low levels of fecal coliform
Answer: An equation is missing in your question below is the missing equation
a) ≈ 8396
b) 150 nm/k
Explanation:
<u>A) Determine the number of Oscillators in the black body</u>
number of oscillators = 8395
attached below is the detailed solution
<u>b) determine the peak wavelength of the black body </u>
Black body temperature = 20,000 K
applying Wien's law / formula
λmax = b / T ------ ( 1 )
T = 20,000 K
b = 3 * 10^6 nm
∴ λmax = 150 nm/k
Answer:
λ = 5.85 x 10⁻⁷ m = 585 nm
f = 5.13 x 10¹⁴ Hz
Explanation:
We will use Young's Double Slit Experiment's Formula here:

where,
λ = wavelength = ?
Y = Fringe Spacing = 6.5 cm = 0.065 m
d = slit separation = 0.048 mm = 4.8 x 10⁻⁵ m
L = screen distance = 5 m
Therefore,

<u>λ = 5.85 x 10⁻⁷ m = 585 nm</u>
Now, the frequency can be given as:

where,
f = frequency = ?
c = speed of light = 3 x 10⁸ m/s
Therefore,

<u>f = 5.13 x 10¹⁴ Hz</u>