Answer:
Explanation:
From the given information:
We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then
The volume charge distribution relates to the radial direction at r = R
∴



To find the constant k, we examine the total charge Q which is:


∴



Thus;




Hence, from equation (1), if k = 


To verify the units:

↓ ↓ ↓
c/m³ c/m³ × 1/m
Thus, the units are verified.
The integrated charge Q



since 

Answer:
* thermal energy
potential energy,
potential energy
Explanation:
The ship has various types of energy,
* thermal energy. This energy is associated with the temperature of the coal, the hotter the greater its internal energy,
* potential energy this energy is stored in the constituent atoms within carbon
* potential energy. It is due to the configuration of the system, in this case the sun heats the coal
Answer:
1879.33J
874.1W
Explanation:
Given parameters:
Distance covered = 2.91m
Time taken = 2.15s
Mass of Bart = 65.9kg
Unknown:
Work done = ?
Power rating = ?
Solution:
Here, the work done is related to the the potential energy in climbing this flight of stairs.
Work done = Potential energy = mgH
where m is the mass
g is the acceleration due to gravity
H is the height
Work done = 65.9 x 9.8 x 2.91 = 1879.33J
Power is defined as the rate at which work is being done.
Power = 
=
= 874.1W
Answer:
t = 6 [s]
Explanation:
In order to solve this problem we must first use this equation of kinematics.

where:
Vf = final velocity = 0 (the car comes to rest)
Vo = initial velocity = 72 [km/h]
a = acceleration [m/s²]
x = distance = 60 [m]
First we must convert the velocity from kilometers per hour to meters per second.
![72 [\frac{km}{h}]*\frac{1000m}{1km} *\frac{1h}{3600s} =20 [m/s]](https://tex.z-dn.net/?f=72%20%5B%5Cfrac%7Bkm%7D%7Bh%7D%5D%2A%5Cfrac%7B1000m%7D%7B1km%7D%20%2A%5Cfrac%7B1h%7D%7B3600s%7D%20%3D20%20%5Bm%2Fs%5D)
![0=(20)^{2} -2*a*60\\400 = 120*a\\a=3.33[m/s^{2} ]](https://tex.z-dn.net/?f=0%3D%2820%29%5E%7B2%7D%20-2%2Aa%2A60%5C%5C400%20%3D%20120%2Aa%5C%5Ca%3D3.33%5Bm%2Fs%5E%7B2%7D%20%5D)
Now using this other equation of kinematics.

0 = 20-3.33*t
t = 6[s]