The heat released by the water when it cools down by a temperature difference AT
is Q = mC,AT
where
m=432 g is the mass of the water
C, = 4.18J/gºC
is the specific heat capacity of water
AT = 71°C -18°C = 530
is the decrease of temperature of the water
Plugging the numbers into the equation, we find
Q = (4329)(4.18J/9°C)(53°C) = 9.57. 104J
and this is the amount of heat released by the water.
Answer:
Screening for the presence of drugs in serum and urine using different separation modes of capillary electrophoresis. The most common mode is capillary zone electrophoresis (CZE), in which charged analytes migrate in a buffer under the influence of an electric field.
Explanation:
Answer:
C. More NO2 and SO2 will form
Explanation:
Le Chatelier's Principle : It predicts the behavior of equilibrium due to change in pressure , temperature , volume , concentration etc
It states that When external changes are introduced in the equilibrium then it will shift the equilibrium in a direction to reduce the change.
In given Reaction SO3 is introduced(increased) .
So equilibrium will shift in the direction where SO3 should be consumed(decreased)
Hence the equilibrium will go in backward direction , i.e

So more and more Of NO2 and SO2 will form
There's a lot of capillaries in the lungs because the blood needs to be transferred and the capillaries are the smallest vessels that can do this.
We determine the percent by mass of water in the compound by dividing the mass of water by the total mass. The total mass of Na2SO4.10H2O is equal to 322 g. The mass of water is 180 g.
percent by mass of water = (180 / 322)*(100 %) = 55.9%