Answer:
C
Explanation:
acids are corrosive since they tend to destroy every single thing they do get a big example is the acidic rain which tends to corrode iron sheet thus making them to appear worn out and full of rust
Answer:
105.8 g of Na would be required
Explanation:
Let's think the reaction:
2Na(s) + Cl₂(g) → 2NaCl (s)
1 mol of chlorine reacts with 2 moles of sodium
Then, 2.3 moles of Cl₂ would react with (2.3 .2) / 1 = 4.6 moles
Let's determine the mass of them.
4.6 mol . 23 g/mol = 105.8 g
Basically, the answer for this would be N or NITROGEN. If we combine nitrogen with chlorine, what happens is that, it can attract more chlorine electrons towards itself. The reason is that, nitrogen is considered more electronegative compared to chlorine. So best answer for this is the first option.
Number of proton present in the nucleus determines the atomic number of an element. It determines <span>chemical properties, which is why all atoms with proton count (atomic number) 6 are carbon</span>
Answer:
Fluorine
General Formulas and Concepts:
<u>Chemistry</u>
- Reading a Periodic Table
- Periodic Trends
- Electronegativity - the tendency for an element to attract an electron to itself
- Z-effective and Coulomb's Law, Forces of Attraction
Explanation:
The Periodic Trend for Electronegativity is up and to the right of the Periodic Table.
Fluorine is Element 9 and has 9 protons. Radium is Element 88 and has 88 protons. Therefore, Radium has a bigger Zeff than Flourine.
However, since Radium is in Period 7 while Fluorine is in Period 2, Radium has more core e⁻ than Fluorine does. This will create a much larger shielding effect, causing Radium's outermost e⁻ to have less FOA between them. Fluorine, since it has less core e⁻, the FOA between the nucleus and outershell e⁻ will be much stronger.
Therefore, Fluorine would attract an electron more than Radium, thus bringing us to the conclusion that Fluorine has a higher electronegativity.