Answer:
5Fe⁺² + MnO₄⁻ + 8H⁺ => 5Fe⁺³ + Mn⁺² + 4H₂O
Explanation:
Fe⁺² + MnO₄⁻ + H⁺ => Mn⁺² + Fe⁺³ + H₂O
5(Fe⁺² => Fe⁺³ + 1e⁻) => 5Fe⁺² => 5Fe⁺³ + 5e⁻
<u>MnO₄⁻ + 5e⁻ => Mn⁺² => MnO₄⁻ + 8H⁺ + 5e⁻ => Mn⁺² + 4H₂O</u>
=> 5Fe⁺² + MnO₄⁻ + 8H⁺ => 5Fe⁺³ + Mn⁺² + 4H₂O
Answer:
The right answer is B) evaporation
Explanation:
Transpiration occurs at the leaf surface which is the loss of water due to the evaporation. This phenomenon works as trigger of water and mineral movement above to the xylem. Due to the evaporation of water at the leaf, negative pressure is created at the surface of leaf. Tension is produced which results in the pull of water from roots up to the xylem vessels.
Cross-linked polymers are strong and heat - resistant hence they can be used for this purpose.
A polymer is obtained by the combination of small molecules called monomers. A polymer consists of a regular repeating unit of small molecules called monomers.
A cross-linked polymer is a polymer in which covalent bonds are used to join polymer chains together. Cross-linked polymers are strong and heat - resistant hence they can be used for this purpose.
Learn more: brainly.com/question/17638582
Answer:
Explanation:
The reaction between dimethyl malonate which is an active methylene group with an (∝, β-unsaturated carbonyl compound) i.e methyl vinyl ketone is known as a Micheal Addition reaction. The reaction mechanism starts with the base attack on the β-carbon to remove the acidic ∝-hydrogens and form a carbanion. The carbanion formed(enolate ion) attacks the methyl vinyl ketone(i.e. a nucleophilic attack at the β-carbon) to give a Micheal addition product, this is followed by the protonation to give the neutral product.
Answer: A more electronegative atom will have more attraction to the electrons in a chemical bond.
Explanation:
An atom that is able to attract electrons or shared pair of electrons more towards itself is called an electronegative atom.
For example, fluorine is the most electronegative atom.
Due to its high electronegativity it is able to attract an electropositive atom like H towards itself. As a result, both fluorine and hydrogen will acquire stability by sharing of electrons.
Thus, we can conclude that a more electronegative atom will have more attraction to the electrons in a chemical bond.