The answer is the third one because density is mass divided by volume so 80 divided by 10 is 8
Answer:
The volume of the gas is determined, which will allow you to calculate the temperature.
Explanation:
According to Charles law; the volume of a given mass of an ideal gas is directly proportional to its temperature at constant pressure.
This implies that, when the volume of an ideal gas is measured at constant pressure, the temperature of the ideal gas can be calculated from it according to Charles law.
Hence in the Ideal Gas Law lab, the temperature of an ideal gas is measured by determining the volume of the ideal gas.
Answer:
Here's what I get
Explanation:
It means that the heat comes directly at you without relying on any material to conduct it.
For example, you feel the heat from a campfire even if the wind is blowing crosswise to you and the fire.
Answer:
B the atmosphere it's not on earth and I'm pretty sure the atmosphere doesn't have water in
Explanation:
1, When temperature is increased the volume will also increase. this is because the particles will gain kinetic energy and bombard the walls of the container of the gas at a higher frequency, therefore, for the pressure to remain constant as per Charles' law, the volume will have to increase so that the rate of bombardment remains constant. This is explained by the Charles law which states that the volume of a gas is directly proportional to the absolute temperature provided pressure remains constant.
2. When temperature is Decreased the volume will also Decrease. this is because the particles will loose kinetic energy and bombard the walls of the container of the gas less frequently, therefore, for the pressure to remain constant as per Charles' law, the volume will have to reduce so that the rate of bombardment remains constant. This is explained by the Charles law which states that the volume of a gas is directly proportional to the absolute temperature provided pressure remains constant.
3. When temperature is increased the pressure will increase. This is because the gas particles gain kinetic energy and bombard the walls of the container more frequently. this is according to Pressure law which states that for a constant volume of a gas the pressure is directly proportional to absolute temperature
4. When temperature is decreased, pressure will decrease, This is because the gas particles lose kinetic energy and bombard the walls of the container less frequently. this is according to Pressure law which states that for a constant volume of a gas the pressure is directly proportional to absolute temperature
5. When particles are added, pressure will increase. This is because the bombardment per unit area also increases. Boyles law explains this, that at fixed temperature the volume of a gas is inversely proportional to the pressure.
6. When particles are removed, the pressure will decrease. This is because the bombardment per unit area also decreases. Boyle's law explains this, that at fixed temperature the volume of a gas is inversely proportional to the pressure.