Answer:
the ability to receive help from a supernatural force
Explanation:
The statement that is a part of Kinetic Molecular Theory (KMT) is Molecules in a gas move rapidly. That is option B.
<h3>What is Kinetic Molecular Theory (KMT)?</h3>
Kinetic Molecular Theory (KMT) is defined as the theory that describes the physical behaviour of gases.
The Kinetic Molecular Theory (KMT) include the following:
- Ideal gas molecules are constantly moving;
- They have negligible volume;
- They have negligible intermolecular forces;
- They undergo perfectly elastic collisions; and
- They have an average kinetic energy proportional to the ideal gas's absolute temperature.
Therefore, the statement that is a part of Kinetic Molecular Theory (KMT) is Molecules in a gas move rapidly.
Learn more about gas here:
brainly.com/question/25649765
#SPJ1
Answer:
THE NEW PRESSURE OF THE HELIUM GAS IS 124kPa AFTER THE VOLUME WAS INCREASED FROM 2.48 L TO 2.98 L
Explanation:
Using Boyle's law which states that at constant temperature, the pressure of a given gas is inversely proportional to the volume occupied by the gas.
Mathematically,
P1 V1 = P2 V2
P1 = 150 kPa = 150 * 10^3 Pa
V1 = 2.48 L
V2 = 2.98 L
P2 = ?
Rearranging the formula making P2 the subject of the equation, we obtain;
P2 = P1 V1 / V2
P2 = 150 * 10^3 * 2.48 / 2.98
P2 = 372 * 10 ^3 / 2.98
P2 = 124.83 * 10^3 Pa or 124.8kPa
In other words, the new pressure of the helium gas after its volume was increased from 2.48 L to 2.98 L is 124.8kPa.
Answer:
<u>M</u><u>eter,</u><u> </u><u>kilometer </u><u>&</u><u> </u><u>inch </u>- used to measure length or distance.
Answer:
2.93g
Explanation:first, let us calculate the number of mole of NaCl present in the solution. This is illustrated below:
Molarity = 0.5M
Volume = 100cm^3 = 100/1000 = 0.1L
Mole =?
Molarity = mole /Volume
Mole = Molarity x Volume
Mole of NaCl = 0.5 x 0.1 = 0.05mole
Now we can obtain the mass of NaCl as follows:
Molar Mass of NaCl = 23 + 35.5 = 58.5g/mol
Mole of NaCl = 0.05mol
Mass of NaCl =?
Mass = number of mole x molar Mass
Mass of NaCl = 0.05 x 58.5
Mass of NaCl = 2.93g