Answer: Option (a) is the correct answer.
Explanation:
Ionic salts are defined as the salts which tend to contain ionic bonds as there occurs transfer of electrons between its combining atoms.
So, when an ionic salt melts or it is dissolved in water then it will dissociate into its respective ions and as electricity is the flow of electrons or ions. Hence, this salt is then able to conduct electricity.
As covalent compounds are insoluble in water so, they do no dissociate into ions. Hence, they do not conduct electricity.
Similarly, metallic and network solids do not dissociate into ions either when melted or dissolved in water. Therefore, they also do not conduct electricity.
Thus, we can conclude that when a white crystalline salt conducts electricity when it is melted and when it dissolves in water then this bond is of ionic type.
Answer:

Explanation:
We will need a balanced chemical equation with masses, moles, and molar masses.
1. Gather all the information in one place:
Mᵣ: 18.02
2Na + H₂O ⟶ 2NaOH + H₂
m/g: 72.0
2. Moles of H₂O

3. Moles of Na
The molar ratio is 2 mol Na/1 mol H₂O.

Answer:
Explanation:
H2SO4 let S be x
2(1) + x + 4(-2) = 0
2 + x - 8 = 0
x - 6 = 0
x = 6
For H2S7O8 let S be x
2(1) + 7(x) + 8(-2) = 0
2 + 7x - 16 = 0
7x - 14 = 0
7x = 14
x = 14/7
x = 2
:- H2SO4 as the larger percentage
Answer:
Ka = ( [H₃O⁺] . [F⁻] ) / [HF]
Explanation:
HF is a weak acid which in water, keeps this equilibrium
HF (aq) + H₂O (l) ⇄ H₃O⁺ (aq) + F⁻ (aq) Ka
2H₂O (l) ⇄ H₃O⁺ (l) + OH⁻ (aq) Kw
HF is the weak acid
F⁻ is the conjugate stron base
Let's make the expression for K
K = ( [H₃O⁺] . [F⁻] ) / [HF] . [H₂O]
K . [H₂O] = ( [H₃O⁺] . [F⁻] ) / [HF]
K . [H₂O] = Ka
Ka, the acid dissociation constant, includes Kwater.
Answer:
There are
grams contained in all the seawater in the world.
Explanation:
At first let is determinate the total mass of seawater (
), measured in grams, in the world by definition of density and considering that mass is distributed uniformly:

Where:
- Density of seawater, measured in grams per liters.
- Volume of seawater, measured in liters.
If
and
, then:


The total mass of sodium chloride is determined by the following ratio:


Given that
and
, the total mass of sodium chloride in all the seawater in the world is:

There are
grams contained in all the seawater in the world.