Answer:
B. 6.6%
Explanation:
The percentage error of a measurement can be calculated using the formula;
Percent error = (experimental value - accepted value / accepted value) × 100
In this question, the calibrated 250.0 gram mass is the accepted value while the weighed mass of 266.5 g is the experimental or measured value.
Hence, the percentage error can be calculated thus;
Percent error = (266.5-250.0/250.0) × 100
Percent error = 16.5/250 × 100
Percent error = 0.066 × 100
Percent error = 6.6%
Answer:
As a result, light travels fastest in empty space, and travels slowest in solids. In glass, for example, light travels about 197,000 km/s.
Explanation:
Answer:
loud bangs
Explanation:
the pots for cooking fell
Answer:
I = M R^2 is the moment of inertia about a point that is a distance R from the center of mass (uniform distributed mass).
The moment of inertia about the center of a sphere is 2 / 5 M R^2.
By the parallel axis theorem the moment of inertia about a point on the rim of the sphere is I = 2/5 M R^2 + M R^2 = 7/5 M R^2
I = 7/5 * 20 kg * .2^2 m = 1.12 kg m^2
Answer:
Car H
Explanation:
Frictional force is a resistant force. It is given as:
F = u*m*g
Where u = coefficient of friction
m = mass
g = acceleration due to gravity
From the formula above, we see that frictional force is dependent on the mass of object and the coefficient of friction.
Since they all have the same tires, the coefficient of friction between the tire and the floor is the same for each car. Acceleration due to gravity, g, is constant.
The only factor that determines the frictional force of each car is the mass. Hence, the more the mass, the more the frictional force.
So, the most massive car will have the most frictional force and hence, will come to a stop quicker than the others. The least massive car will have the least frictional force and so, will take a longer time to stop.