Answer:
53.11× 10²³ molecules
Explanation:
Given data:
Number of molecules of CO₂ = ?
Mass of CO₂ = 388.1 g
Solution:
Formula:
Number of moles = mass/ molar mass
Molar mass of CO₂ = 12× 1 + 16×2
Molar mass of CO₂ = 44 g/mol
Now we will put the values in formula.
Number of moles = 388.1 g/ 44 g/mol
Number of moles = 8.82 moles
Now we will calculate the number of molecules by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ molecules
8.82 mol × 6.022 × 10²³ molecules / 1 mol
53.11× 10²³ molecules
Answer:
4380 mmHg
Explanation:
Boyle's Law can be used to explain the relationship between pressure and volume of an ideal gas. The pressure is inversely related to volume, so if volume decrease the pressure will increase. It can be expressed in the equation as:
P1V1=P2V2
In this question, the first condition is 2L volume and 876 mmHg pressure. Then the system changed into the second condition where the volume is 400ml and the pressure is unknown. The pressure will be:
P1V1= P2V2
876 mmHg * 2L = P2 * 400ml /(1000ml/L)
P2= 876 mmHg * 2L / 0.4L
P2= 4380 mmHg
initial volume of the argon sample = 5.93L according to Boyle's law
What is Boyle's law ?
Boyle's law, also known as Mariotte's law, is a relationship describing how a gas will compress and expand at a constant temperature. The pressure (p) of a given quantity of gas changes inversely with its volume (v) at constant temperature, according to this empirical connection, which was established by the physicist Robert Boyle in 1662. In equation form, this means that pv = k, a constant.
According to Boyle's law
P1/V1 = P2/V2
P1 = initial pressure
P2 = final pressure
V1 =initial volume
V2= final volume
V1 = P1*V2/P2
V1 = 2.32*18.3/7.16 = 5.93L
initial volume of the argon sample = 5.93L according to Boyle's law
To know about Boyle's law from the link
brainly.com/question/26040104
#SPJ4
Answer:
A mixture can contain components in any proportions while a compound contains components in fixed proportions. All components in a mixture do not chemically react, while the components in a compound do react and their original properties are lost.