The kinetic energy of the small ball before the collision is
KE = (1/2) (mass) (speed)²
= (1/2) (2 kg) (1.5 m/s)
= (1 kg) (2.25 m²/s²)
= 2.25 joules.
Now is a good time to review the Law of Conservation of Energy:
Energy is never created or destroyed.
If it seems that some energy disappeared,
it actually had to go somewhere.
And if it seems like some energy magically appeared,
it actually had to come from somewhere.
The small ball has 2.25 joules of kinetic energy before the collision.
If the small ball doesn't have a jet engine on it or a hamster inside,
and does not stop briefly to eat spinach, then there won't be any
more kinetic energy than that after the collision. The large ball
and the small ball will just have to share the same 2.25 joules.
Answer:
I would love to help but I don't know I'm so sorry
Answer:
.....different temperatures
Explanation:
heat is a form of energy that is transfered from a body of high temperature to a body of low temperature....Cannot happen if the two bodies have the same temperature(thermal equilibrium)
Answer:
54 Kobo
Explanation:
Units of <u>electricity</u> are measured in kilowatt hours (kWh).
Given information:
- 900 watt electric iron
- Appliance usage = 4 hours a week for 5 weeks
- Unit cost of electricity = 3 Kobo per kWh
<h3><u>Step 1</u></h3>
Convert the wattage of the electric iron from watts to kilowatts.
1000 watts (W) = 1 kilowatt (kW)
⇒ 900 watts = 1 ÷ 1000 = 0.9 kilowatts
This means that the power consumption of the electric iron is 0.9 kW per hour of use.
<h3><u>Step 2</u></h3>
Total hours spent pressing clothes:
= 4 hours per week for 5 weeks
= 4 × 5
= 20 hours
<u>Total power consumption</u>:
= number of kW × number of hours
= 0.9 × 20
= 18 kWh
<h3><u>Step 3</u></h3>
To find the <u>total cost</u>, multiply the total kWh by the cost per kWh:
⇒ Cost = 18 × 3 = 54 Kobo
psychologist counseling would be the correct answer I believe