The temperature of the water getting colder would cause the liquid in the thermometer to drop due to less heat being transferred from the water to the liquid, so the liquid molecules are closer than when they have high energy.
<h2>
Answer: U-238</h2>
Explanation:
Let's begin by explaining that for radioactive geological dating (also called radioisotope dating) in which radioactive impurities were selectively incorporated when the fossil materials were formed, it is very useful to compare it with a naturally occurring radioisotope having a known half-life.
Now, taking into account that the <u>fossils are millions and millions of years old, radioisotopes are needed that exceed this measure.
</u>
To understand it better:
The longer the half-life of a radioisotope, the greater its utility for estimating fossil ages or geological formations.
In this sense, uranium-238 (U238) has a half-life of 4,470 million years, therefore, it is among the most commonly used radioisotopes for fossil and geological dating.
This is because Newton refined Galileo's idea of inertia and created it as his first law of motion. Galileo stated that it was the propensity of things to resist changes in motion. Newton refined it by including: "Every thing continues in a condition of rest or uniform speed in a straight line except acted on by a nonzero net power".
Answer:
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
Explanation:
Given that
Yield strength ,Sy= 240 MPa
Tensile strength = 310 MPa
Elastic modulus ,E= 110 GPa
L=380 mm
ΔL = 1.9 mm
Lets find strain:
Case 1 :
Strain due to elongation (testing)
ε = ΔL/L
ε = 1.9/380
ε = 0.005
Case 2 :
Strain due to yielding


ε '=0.0021
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
For computation of load strain due to testing should be less than the strain due to yielding.
Answer:
2 N
Explanation:
From the question, it's given that
Mass m = 0.2 kg
Acceleration a = 10 m/s^2
The force a soccer goalie experience when stopping a ball will be equal to the force at which the ball is being kicked. This is
F = ma
Substitute all the parameters into the formula
F = 0.2 × 10
F = 2 Newton.