Answer:
[CaCl₂] = 1.32 M
Explanation:
We know the volume of solution → 0.30 L
We know the mass of solute → 44 g of CaCl₂
Let's convert the mass of solute to moles.
44 g . 1 mol / 110.98 g = 0.396 moles
Molarity (mol/L) → 0.396 mol / 0.3 L = 1.32 M
382.85 Celsius is the temperature does 0.750 moles of an ideal gas occupy a volume of 35.9 L at 114 kPa.
Explanation:
Given data:
number of moles of the gas = 0.75 moles
volume of the gas = 35.9 liters
pressure of the gas = 114 KPa or 1.125 atm
R = 0.0821 latm/moleK
temperature of the gas T = ?
The equation used to calculate temperature from above data is ideal gas law equation.
the equation is :
PV = nRT
T = 
Putting the values in the above rewritten equation:
T = 
T = 655.9 K
To convert kelvin into celsius, formula used is
K = 273.15+ C
putting the values in the equation
C = 656 - 273.15
= 382.85 Celsius
Answer:
B 1.23 g/cc
Explanation:
For something to float on seawater, the density must be less than 1.03 g/mL. If the object sinks, the density is greater than 1.03 g/mL.
Let’s examine the answer choices. Keep in mind, the ice berg is mostly below the water level.
A. 0.88 g/cc
This is less than 1.03 g/cc, which would result in floating.
B. 1.23 g/cc
This is the best answer choice. The iceberg is mostly beneath the water, but some of it is exposed. The density is greater than 1.03 g/mL, but not so much greater that it would immediately sink.
C. 0.23 g/cc
This is less than 1.03 g/cc, which would produce floating.
D. 4.14 g/cc
This is much greater than 1.03 g/cc and the result would be sinking.