The answer is C: A surfer rides back to the beach on his surf board.
All the others are examples of people doing stuff to the water, C is an example of the water moving something, in this case the water is moving a surfer and his surf board.
So if the compound has the smallest gram formula mass it has the highest percentage composition by mass of strontium
<u>We are given:</u>
M1 = 3 Molar V1 = 80 mL
M2 = x Molar V2 = 100 mL
<u>Finding the molarity:</u>
We know that:
M₁V₁ = M₂V₂
where V can be in any units
(3)(80) = (x)(100)
x = 240/100 [dividing both sides by 100]
x = 2.4 Molar
The correct answer that explains similarities between metal and Metalloids as regards the question is They both conduct electricity
- Metalloids can be regarded as elements that are similar to metals, this is because they posses valence orbitals which is described as highly delocalized over macroscopic volumes.
- As a result of this they can serve as electrical conductors.
- metalloids posses small energy gap which is located between the valence band as well as the conduction band, as a result of this they are considered as intrinsic semiconductors when compare to pure conductors like metal.
- Example of metal is Calcium, sodium and that of Metalloids are silicon and germanium
Therefore, metal and Metalloids are similar because of their conductivity of electricity
Learn more at: brainly.com/question/21036799?referrer=searchResults
Answer: Bohr postulated that electronic energy levels are quantized. Secondly, a photon of light of a particular frequency is emitted when electrons move from a higher to a lower energy levels.
Explanation:
The Bohr model of the atom is the immediate predecessor of the wave mechanical model of the atom. The wave mechanical model refined the Bohr's model by treating the electron as a wave having a wave function psi. The wave function describes the identity of the electron. From Heisenberg uncertainty principle, the position of a particle cannot be accurately and precisely measured. Hence the wave mechanical model added that electrons are not localized in orbits according to Bohr's model but the integral of psi squared dx gives the probability of finding the electron within a given space.