Answer:
Explanation:
3.
Knowns: 100mL of solution; concentration of 0.7M
Unknown: number of moles
Equation: number of moles = volume * concentration
Plug and Chug: number of moles = 100/1000 * 0.7 = 0.07 mole
Final Answer: 0.07mole
2.
Knowns: 5.50L of solution; concentration of 0.400M
Unknown: number of moles
Equation: number of moles = volume * concentration
Plug and Chug: number of moles = 5.5 * 0.4 = 2.20 mole
Final Answer: 2.20 mole
Answer:
C. The thermal energy of a substance.
Explanation:
Hope it helps.
Answer:
Explanation: The strengths of the inter molecular forces varies as follows -

The normal boiling point of CSe2 is 125°C and that of CS2 is 116°C, which explains the trend that as we move down the group, the boiling point of e compound increases as the size increases.
This usually happens because larger and heavier atoms have a tendency to exhibit greater inter molecular strengths due to the increase in size . As the size increases, the valence shell electrons move far away from the nucleus, thus has a greater tendency to attract the temporary dipoles.
And larger the inter molecular forces, more tightly the electrons will be held to each other and thus more thermal energy would be required to break the bonds between them.
Answer : The rate of effusion of sulfur dioxide gas is 52 mL/s.
Solution :
According to the Graham's law, the rate of effusion of gas is inversely proportional to the square root of the molar mass of gas.

or,
..........(1)
where,
= rate of effusion of nitrogen gas = 
= rate of effusion of sulfur dioxide gas = ?
= molar mass of nitrogen gas = 28 g/mole
= molar mass of sulfur dioxide gas = 64 g/mole
Now put all the given values in the above formula 1, we get:


Therefore, the rate of effusion of sulfur dioxide gas is 52 mL/s.