Explanation:
For the given reaction:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

![Rate=k[CO]^x[H_2]^y](https://tex.z-dn.net/?f=Rate%3Dk%5BCO%5D%5Ex%5BH_2%5D%5Ey)
where x and y are order wrt to
and 
According to collision theory , the molecules must collide for a reaction to take place. According to collision theory , the rate of a reaction is proportional to rate of collision of reactants.
Thus with an increase in concentration of reactants , the rate of reaction also increases. This is because if the concentration of reactants increases , the chances of collision between molecules also increases and thus more products wil be formed which in turn increases the rate of reaction.
First, since l = n-1,
5,4,-5,1/2 and 2,1,0,1/2 are the only answer choices left.
Next, since ml = -l to l,
2,1,0,1/2
is the answer because in 5,4,-5,1/2, the ml value of -5 is not in the range of -4 to 4, as notes by the value 4 for l.
Answer:
See explanation and image attached
Explanation:
Aromatic compounds undergo electrophilic aromatic substitution reactions in which the aromatic ring is maintained.
Substituted benzenes may be more or less reactive towards electrophilic aromatic substitution than benzene depending on the nature of the substituent present in the ring.
Substituents that activate the ring towards electrophilic substitution such as -OCH3 are ortho-para directing.
The major products of the bromination of anisole are p-bromoanisole and o-bromoanisole. The resonance structures leading to these products are shown in the image attached.
Answer:
H, Ca, Cl is the answer dude