The formula written in the 3rd line above the picture is WRONG. Don't use it. Use the formula the way it's printed in the picture.
V = d / t
That means Speed = (distance) / (time)
The question tells us that v = 330 m/s
So you write 330 m/s in the equation in place of 'v', like this:
330 m/s = (distance) / (time)
The question also tells us that the time is 0.4 second
So you write 0.4 sec in place of 'time', like this:
330 m/s = (distance) / (0.4 second)
Finally, you take this, and multiply each side of the equation by (0.4 sec). Then it'll say
distance = (330 m/s) x (0.4 second)
As soon as you do that one single multiplication there with your pencil or your calculator, you'll have the distance.
This is either the 2nd or 3rd time you've posted this same exact question since last weekend. It can be solved THIS time exactly like the answers that were posted those other times.
The DOT in the picture is marked for the wrong choice. Use the formula that's printed in the picture, not copied above it.
Answer:
Extrasolar planets are very dim light sources compared to their stars. At visible wavelengths, they generally have less than a millionth of the brightness of their parent star. It is extremely difficult to detect this type of dim light source, and in addition, the parent star has dazzling light that almost makes it impossible.
Answer:
If gravity on Earth is increased, this gravitational tugging would have influenced the moon's rotation rate. If it was spinning more than once per orbit, Earth would pull at a slight angle against the moon's direction of rotation, slowing its spin. If the moon was spinning less than once per orbit, Earth would have pulled the other way, speeding its rotation.
During the diving when a diver jumps off from platform he brings her knees and arms closer to the body
This is because when diver is in air he don't have any torque about his center of mass which shows that angular momentum of his body will remain constant during his motion in air
Now we can say product of his moment of inertia and his angular speed will remain constant always
So here if we decrease the moment of inertia of the body during our motion then angular speed will increase so that product will remain constant
and this is what the diver use during his diving
so correct answer will be
<u><em>It decreases her moment of inertia.</em></u>