Answer:
λ = 396.7 nm
Explanation:
For this exercise we use the diffraction ratio of a grating
d sin θ = m λ
in general the networks works in the first order m = 1
we can use trigonometry, remembering that in diffraction experiments the angles are small
tan θ = y / L
tan θ =
= sin θ
sin θ = y / L
we substitute
= m λ
with the initial data we look for the distance between the lines
d =
d = 1 656 10⁻⁹ 1.00 / 0.600
d = 1.09 10⁻⁶ m
for the unknown lamp we look for the wavelength
λ = d y / L m
λ = 1.09 10⁻⁶ 0.364 / 1.00 1
λ = 3.9676 10⁻⁷ m
λ = 3.967 10⁻⁷ m
we reduce nm
λ = 396.7 nm
Answer:
1) 3.1 m/s
2) 7 m/s
Explanation:
Distance due north = 80 m
Distance due south = 30 m
Distance between north and south = (80 - 30) m = 50 m
Total time = (12 + 4) sec = 16 sec
1) Average speed = 50/16 = 3.1 m/s
2) Average velocity = Total distance/total time = (80 + 30) m/16 s = 110/16 = 7 m/s
Answer:
ac = 72 m/s²
Fc = 504 N
Explanation:
We can find the centripetal acceleration of the hammer by using the following formula:

where,
ac = centripetal acceleration = ?
v = constant speed = 12 m/s
r = radius = 2 m
Therefore,

<u>ac = 72 m/s²</u>
<u></u>
Now, the centripetal force applied by the athlete on the hammer will be:

<u>Fc = 504 N</u>
True because , a compound forms when two or more atoms form a chemical bond and the chemical formula for water is H2O which means each molecule of water consists of one oxygen atom