Answer:
True
Explanation:
In an uncompetitive inhibition, initially the substrate [S] binds to the active site of the enzyme [E] and forms an enzyme-substrate activated complex [ES].
The inhibitor molecule then binds to the enzyme- substrate complex [ES], resulting in the formation of [ESI] complex, thereby inhibiting the reaction.
This inhibition is called uncompetitive because the inhibitor does not compete with the substrate to bind on the active site of the enzyme.
Therefore, in an uncompetitive inhibition, the inhibitor molecule can not bind on the active site of the enzyme directly. The inhibitor can only bind to the enzyme-substrate complex formed.
Answer:
Forming the activated complex requires energy.
Explanation:
Answer:
0.550
Explanation:
The absorbance (A) of a substance depends on its concentration (c) according to Beer-Lambert law.
A = ε . <em>l</em> . c
where,
ε: absorptivity of the species
<em>l</em>: optical path length
A 45 mM phosphate solution (solution A) had an absorbance of 1.012.
A = ε . <em>l</em> . c
1.012 = ε . <em>l</em> . 45 mM
ε . <em>l</em> = 0.022 mM⁻¹
We can find the concentration of the second solution using the dilution rule.
C₁ . V₁ = C₂ . V₂
45mM . 11mL = C₂ . 20.0 mL
C₂ = 25 mM
The absorbance of the second solution is:
A = (ε . <em>l</em> ). c
A = (0.022 mM⁻¹) . 25 mM = 0.55 (rounding off to 3 significant figures = 0.550)
The number of moles of 210 grams of NaHCO₃ is 2.5 moles.
<h3>How to find the Number of moles ? </h3>
To calculate the number of moles use the formula
Number of moles = 
Mass of NaHCO₃ = 210 g
Now we have to find the Molar mass of NaHCO₃
= Atomic mass of Na + Atomic mass of H + Atomic mass of C + 3 (Atomic mass of O)
= 23 + 1 + 12 + 3 (16)
= 36 + 48
= 84 g/mol
Now put the value in above formula we get
Number of moles = 
= 
= 2.5 moles
Thus from the above conclusion we can say that The number of moles of 210 grams of NaHCO₃ is 2.5 moles.
Learn more about the Moles here: brainly.com/question/15356425
#SPJ1
Hi. I can't help you if you don't have an equation. Please provide one.