From mole ratios, the mass ratio of different elements can be predicted. Also the volume can be predicted based on density for liquids and ideal gas law equation for gases. From the mole ratios, the empirical formula can be predicted, as well as the molecular formula given another data which is mass of the sample.
Answer:
Mass of water produced is 22.86 g.
Explanation:
Given data:
Mass of hydrogen = 2.56 g
Mass of oxygen = 20.32 g
Mass of water = ?
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 20.32 g/ 32 g/mol
Number of moles = 0.635 mol
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 2.56 g/ 2 g/mol
Number of moles = 1.28 mol
Now we will compare the moles of water with oxygen and hydrogen.
O₂ : H₂O
1 : 2
0.635 ; 2×0.635 = 1.27
H₂ : H₂O
2 : 2
1.28 : 1.28
The number of moles of water produced by oxygen are less thus it will be limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 1.27 × 18 g/mol
Mass = 22.86 g
To cut this short and for your understanding, ionic bond is formed between metals (mostly right column in periodic table). Covalent bond is formed between non-metals (mostly left column in periodic table). So polar covalent is also a covalent bond but it is polar, which means the shape of molecules are not symmetrical hence maybe an atom in a molecule has most of the electron attracted to it causing itself to be partial negative (since electron are negatively charged) and the other atom has its electron being attracted by others became partial positive. Polar covalent can also be when H atom is binding either to F, O or N (also known as hydrogen bond).
Answer:
a new scientific discovery that benefits the environment
6.21 x 10^3 = (Move decimal point 3 spaces to the right)
6210
6210 (0.1050)
652.05