Reaction of option c produces precipitate.
Rhodium on reacting with potassium phosphate produces rhodium phosphate which remain in solution due to low lattice energy for rhodium phosphate.
Niobium on reacting with lithium carbonate produces niobium carbonate and it will remain in aqueous form.
Cobalt on reacting with zinc nitrate produces cobalt nitrate. This, Co(NO3 )2 is insoluble precipitate and settles at bottom whereas zinc ion will remain in solution as follows:

Potassium ion on reacting with sodium sulfide produces potassium sulfide which remain in solution
Answer: V = 33.9 L
Explanation: We will use Charles Law to solve for the new volume.
Charles Law is expressed in the following formula. Temperatures must be converted in Kelvin.
V1 / T1 = V2 / T2 then derive for V2
V2 = V1 T2 / T1
= 35 L ( 308 K ) / 318 K
= 33.9 L
Moles of PF₃ : 4
<h3>Further explanation</h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
Reaction

1.25 moles of P₄(s) is reacted with 6 moles of F₂(g)
Limiting reactant : the smallest ratio (mol divide by coefficient)
P₄ : F₂ =

mol PF₃ based on mol of limiting reactant(F₂), so mol PF₃ :

Answer:
Explanation:
By Ideal Gas Law, P1*V1 / T1 = P2*V2 / T2
So new pressure = (P1*V1 / T1) / (V2 / T2)
= P1*V1*T2 / T1*V2
= 800*3.6*298 / 250*1.8
= 1907.2 mmHg
Hey there!
The pH range of a buffer is the pH window where in the uffer resists the changes in pH of the solution upon addition of small amounts of acid or base. Generally, the pH range of a buffer solution is equal to pKa ±1.
for this system :
ka= 1.3*10⁻⁷ , hence
pKa= - log (Ka)
pKa = - log ( 1.3*10⁻⁷)
pKa = 6.88
Therefore, hence the buffer can be used in pH range of 5.88 to 7.88.
Hope that helps!