Answer:
The molar mass of the gas is 44.19 g/mol
Explanation:
Amount of sample of gas = m = 13.5 g
Volume occupied by the gas = V = 5.10 L
Pressure of the gas = P = 149.83 KPa
1 KPa = 0.00986 atm
P = 
Assuming M g/mol to be the molar mass of the gas
Assuming the gas is behaving as an ideal gas

The molar mass of gas is 44.19 g/mol
Answer:
186.3g
Explanation:
4.5moles of K₂CO₃ is in 1000ml
? moles of K₂CO₃ is in 300 ml
(4.5 × 300)/ 1000 = 1.35 moles of K₂CO₃
1 mole of K₂CO₃ = (39 × 2) + 12 + (16 × 3) = 78 + 12 + 48 = 138g
1.35 moles of K₂CO₃ = ?
= (1.35 × 138)/1 = 186.3g
The number of moles for co2=mass(g)/molar mass
n=.22/44=.005 mole of CO2
from the equation we see the relationship between the moles of co2 and O2 and we find that they have the same number of moles
So we need .005mole of O2
Multiple the number of moles with avogadro’s number to know the number of O2molecules
.005x6.022 x10^23
Answer:
YES YES YES YES YES YES YES YES YES YES YES YES
Answer:
1.8g
Explanation:
Initial volume = 43.5ml
Final volume = 49.4ml
Mass = 10.88g
Density = ?
Volume = Final volume - initial volume
= 49.4 - 43.5
= 5.9ml
Density = Mass/volume
Density = 10.88/5.9
= 1.8g/ml