Answer:
The answer to your question is 24.32 g
Explanation:
Data
Atomic weight = ?
HCl volume = 125 ml
Molarity = 0.2
mass of metal = 0.304 g
Balanced chemical equation
M + 2HCl ⇒ MCl₂ + H₂
Process
1.- Calculate the moles of HCl
Molarity = moles / volume (L)
- Solve for moles
moles = Molarity x volume
moles = 0.2 x 0.125
= 0.025
2.- Calculate the moles of the Metal
1 mol of M ----------------- 2 moles of HCl
x ----------------- 0.025 moles of HCl
x = (0.025 x 1) / 2
x = 0.0125 moles of HCl
3.- Calculate the atomic weight of the metal
atomic weight ---------------- 1 mol
0.304 g ---------------0.0125 moles
Atomic weight = (1 x 0.304) / 0.0125
Atomic weight = 24.32 g
Answer: Option (b) is the correct answer.
Explanation:
It is known that in a gas, molecules are away from each other due to more kinetic energy between its particles. As a result, there are more number of collisions between them.
So, when we apply pressure on a gas then its molecules come closer to each other. Due to which there occurs decrease in its volume.
Thus, we can conclude that to investigate the compressibility of a gas increase the pressure on it.
Answer:
High temperatures
Explanation:
NaHCO₃ (8) + HCH,O₂ (aq) → H₂O (l) + CO₂ (g) + NaC,H₃O₂ (aq)
As the flask gets cooler to the touch as the reaction proceeds, the reaction is endothermic. This means that ΔH is positive (ΔH>0).
As a gas is formed (bubbles are formed), ΔS is positive (ΔS>0).
<em>In terms of ΔG:</em>
<em>In order for the reaction to be thermodynamically favorable, ΔH has to be negative</em>, thus:
- The reaction is favorable if TΔS > ΔH.
The greater the temperature, the easier it would be for TΔS to be greater than ΔH.
1.194 mol
(remember to use sig figs!)
Answer:
the principal energy level of an electron refers to the shell or orbital in which the electron is located relative to the atoms nucleus. the first element in a period of the periodic table introduces a new principal energy level.
Explanation:
the electrons surrounding an atom are located in region around the nucleus called "energy level".