One deals with electrons while the other protons.
Answer:
The reaction is not at equilibrium and reaction must run in forward direction.
Explanation:
At the given interval, concentration of NO = 
Concentration of
= 
Concentration of NOBr = 
Reaction quotient,
, for this reaction =
species inside third bracket represents concentrations at the given interval.
So, 
So, the reaction is not at equilibrium.
As
therefore reaction must run in forward direction to increase
and make it equal to
.
Mass number = protons + neutrons = 34+46 =80
the element with an atomic number of 34 and mass number of 80 is selenium
Answer:
350 g dye
0.705 mol
2.9 × 10⁴ L
Explanation:
The lethal dose 50 (LD50) for the dye is 5000 mg dye/ 1 kg body weight. The amount of dye that would be needed to reach the LD50 of a 70 kg person is:
70 kg body weight × (5000 mg dye/ 1 kg body weight) = 3.5 × 10⁵ mg dye = 350 g dye
The molar mass of the dye is 496.42 g/mol. The moles represented by 350 g are:
350 g × (1 mol / 496.42 g) = 0.705 mol
The concentration of Red #40 dye in a sports drink is around 12 mg/L. The volume of drink required to achieve this mass of the dye is:
3.5 × 10⁵ mg × (1 L / 12 mg) = 2.9 × 10⁴ L
T₁ = 40°C + 273.15 = 313.15 Kelvin T₂ = 30°C + 273.15 = 303.15 Kelvin
Solving Gay-Lussac's Law for P₁ we get:
P₁ = P₂ • T₁ ÷ T₂ P₁ = 760 torr • 313.15 K ÷ 303.15 K P₁ = 785.07 torr
Using the calculator, we click on the P1 button.
We then enter the 3 numbers 760 313.15 and 303.15 into the correct boxes then click "CALCULATE" and get our answer of 785.07 torr.