Answer:
direct effect
Increasing the pressure increases the boiling point and decreasing the pressure decreases the boiling point
Answer : At constant pressure work is done by the system on the surroundings.
Explanation :
Work done : Any quantity that flows across the boundary of a system during a change in its state and it completely convertible into the lifting of a weight in the surroundings.
Formula for work done is:

Sign convention :
- When volume expand then system work that means work done by the system.
w = (-ve)
- When volume compress then surrounding work that means work done on the system.
w = (+ve)
The given reaction is:

This is a evaporation process in which phase changes from liquid state to gaseous state at constant temperature.
At constant pressure, work depends only on volume.
In evaporation process, the volume expand that means work is done by the system on the surroundings.
Sign convention is, w = (-ve)
Thus, at constant pressure work is done by the system on the surroundings.
The correct option is: CH4 + O2 → CO2 + H2O.
In writing chemical equations, the reactants are usually written to the left of the equation of the reaction while the products are written to the right of the reaction. An arrow pointing in the right direction shows the direction of the reaction. In the question given above, methane and oxygen are the reactants while carbon dioxide and water are the products. The options that states the chemical reaction correctly is option 1.
Answer:
2 moles
Explanation:
Hi there !!
Given volume = 44.8 litres
Molar volume = 22.4 litres
No: of moles = Given volume / Molar volume
= 44.8 / 22.4 = 2 moles
mol of Na2CO3 = 2.36 x 10⁻⁴
<h3>Further explanation</h3>
Given
Mass : 0.025 g of Na2CO3
Required
moles
Solution
The mole is the number of particles contained in a substance
1 mol = 6.02.10²³
Moles can also be determined from the amount of substance mass and its molar mass :
mol = mass : molar mass
mass = mol x molar mass
Input the value :
mol = mass : MW Na2CO3
mol = 0.025 g : 106 g/mol
mol = 2.36 x 10⁻⁴