Answer: 0.0014 atm
Explanation:
Given that,
Original pressure of air (P1) = 1.08 atm
Original volume of air (T1) = 145mL
[Convert 145mL to liters
If 1000mL = 1l
145mL = 145/1000 = 0.145L]
New volume of air (V2) = 111L
New pressure of air (P2) = ?
Since pressure and volume are given while temperature is held constant, apply the formula for Boyle's law
P1V1 = P2V2
1.08 atm x 0.145L = P2 x 111L
0.1566 atm•L = 111L•P2
Divide both sides by 111L
0.1566 atm•L/111L = 111L•P2/111L
0.0014 atm = P2
Thus, the new pressure of air when the volume is decreased to 111 L is 0.0014 atm
I would say the first three. But I'm not 100% sure. I'm truly sorry if it's wrong
Answer:
46.3g H2O
Explanation:
start by balancing it: CaC2(s) + 2H2O(g) -> Ca(OH)2(s) + C2H2(g)
then use factor label method to solve
82.4g CaC2 x (1 mol CaC2/64.10g CaC2) x (2 mol H2O/1 mol CaC2) x (18.016g H2O/1 mol H20) = 46.3g H2O
Answer:
Answer: A. Gases are easily compressed because of the low density.
Explanation: