1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notsponge [240]
2 years ago
15

How many protons does this atom have?

Physics
2 answers:
Brrunno [24]2 years ago
5 0
The protons an atom has is 36
The neutrons an atoms has is 6
The electrons an atom is equal to the protons
Vinil7 [7]2 years ago
5 0

Answer:

your answer is 6,8,6

Explanation:

You might be interested in
A pendulum is released from rest at point A. If the horizontal line represents the reference point, the pendulum has energy at p
Rzqust [24]
Only kinetic

______________

Okay?


6 0
3 years ago
Read 2 more answers
In the design of a rapid transit system, it is necessary to balance the average speed of a train against the distance between st
bekas [8.4K]

Answer:

a) t = 746 s

b) t = 666 s

Explanation:

a)

  • Total time will be the sum of the partial times between stations plus the time stopped at the stations.
  • Due to the distance between stations is the same, and the time between stations must be the same (Because the train starts from rest in each station) we can find total time, finding the time for any of the distance between two stations, and then multiply it times the number of distances.
  • At any station, the train starts from rest, and then accelerates at 1.1m/s2 till it reaches to a speed of 95 km/h.
  • In order to simplify things, let's first to convert this speed from km/h to m/s, as follows:

       v_{1} = 95 km/h *\frac{1h}{3600s}*\frac{1000m}{1 km} = 26.4 m/s  (1)

  • Applying the definition of acceleration, we can find the time traveled by the train before reaching to this speed, as follows:

       t_{1} = \frac{v_{1} }{a_{1} } = \frac{26.4m/s}{1.1m/s2} = 24 s (2)

  • Next, we can find the distance traveled during this time, assuming that the acceleration is constant, using the following kinematic equation:

       x_{1} = \frac{1}{2} *a_{1} *t_{1} ^{2} = \frac{1}{2} * 1.1m/s2*(24s)^{2} = 316.8 m  (3)

  • In the same way, we can find the time needed to reach to a complete stop at the next station, applying the definition of acceleration, as follows:

       t_{3} = \frac{-v_{1} }{a_{2} } = \frac{-26.4m/s}{-2.2m/s2} = 12 s (4)

  • We can find the distance traveled while the train was decelerating as follows:

       x_{3} = (v_{1} * t_{3})   + \frac{1}{2} *a_{2} *t_{3} ^{2} \\ = (26.4m/s*12s) - \frac{1}{2} * 2.2m/s2*(12s)^{2} = 316.8 m - 158.4 m = 158.4m  (5)

  • Finally, we need to know the time traveled at constant speed.
  • So, we need to find first the distance traveled at the constant speed of 26.4m/s.
  • This distance is just the total distance between stations (3.0 km) minus the distance used for acceleration (x₁) and the distance for deceleration (x₃), as follows:
  • x₂ = L - (x₁+x₃) = 3000 m - (316.8 m + 158.4 m) = 2525 m (6)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{2525m}{26.4m/s} = 95.6 s   (7)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 95.6 s + 12 s = 131.6 s (8)
  • Due to we have six stations (including those at the ends) the total time traveled while the train was moving, is just t times 5, as follows:
  • tm = t*5 = 131.6 * 5 = 658.2 s (9)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 4 intermediate stops, we need to add to total time 22s * 4 = 88 s, as follows:
  • Ttotal = tm + 88 s = 658.2 s + 88 s = 746 s (10)

b)

  • Using all the same premises that for a) we know that the only  difference, in order to find the time between stations, will be due to the time traveled at constant speed, because the distance traveled at a constant speed will be different.
  • Since t₁ and t₃ will be the same, x₁ and x₃, will be the same too.
  • We can find the distance traveled at constant speed, rewriting (6) as follows:
  • x₂ = L - (x₁+x₃) = 5000 m - (316.8 m + 158.4 m) = 4525 m (11)
  • The time traveled at constant speed (t₂), can be found from the definition of average velocity, as follows:

       t_{2} = \frac{x_{2} }{v_{1} } = \frac{4525m}{26.4m/s} = 171.4 s   (12)

  • Total time between two stations is simply the sum of the three times we have just found:
  • t = t₁ +t₂+t₃ = 24 s + 171.4 s + 12 s = 207.4 s (13)
  • Due to we have four stations (including those at the ends) the total time traveled while the train was moving, is just t times 3, as follows:
  • tm = t*3 = 207.4 * 3 = 622.2 s (14)
  • Since we know that the train was stopped at each intermediate station for 22s, and we have 2 intermediate stops, we need to add to total time 22s * 2 = 44 s, as follows:
  • Ttotal = tm + 44 s = 622.2 s + 44 s = 666 s (15)
7 0
2 years ago
What is the maximum magnitude of charge that can be placed on each plate if the electric field in the region between the plates
34kurt

The given question is incomplete. The complete question is as follows.

A parallel-plate capacitor has capacitance C_{0} = 8.50 pF when there is air between the plates. The separation between the plates is 1.00 mm.

What is the maximum magnitude of charge that can be placed on each plate if the electric field in the region between the plates is not to exceed 3.00 \times 10^{4} V/m?

Explanation:

It is known that relation between electric field and the voltage is as follows.

             V = Ed

Now,  

              Q = CV

or,           Q = C \times Ed

Therefore, substitute the values into the above formula as follows.

              Q = C \times Ed

                  = 8.50 pF \times (\frac{10^{-12} F}{1 pF})(3 \times 10^{4} m/s)(1 mm)(\frac{10^{-3} m}{1 mm})

                  = 2.55 \times 10^{-10} C

Hence, we can conclude that the maximum magnitude of charge that can be placed on each given plate is 2.55 \times 10^{-10} C.

3 0
3 years ago
Which of these best describes heat? total thermal energy degree of warmth transfer of thermal energy average kinetic energy
Papessa [141]

Total thermal energy is the answer to your question.

3 0
3 years ago
If you double the frequency of a vibrating object, its period:
Furkat [3]

Answer:

becomes halved.

Explanation:

trust

8 0
3 years ago
Read 2 more answers
Other questions:
  • 1. A big league hitter attacks a fastball! The ball has a mass of 0.16 kg. It is pitched at 38 m/s. After the player hits the ba
    11·1 answer
  • How does kinetic energy affect the stopping distance of a vehicle traveling at 30 mph compared to the same vehicle traveling at
    10·1 answer
  • Regarding inferences about the difference between two population means, the sampling design that uses a pooled sample variance i
    11·1 answer
  • How to find displacement with velocity and time?
    11·1 answer
  • Joy uses 20n of force to shovel the snow 10 meters. how much work does she do?
    7·1 answer
  • A jogger runs at a constant rate of 10.0 m every 2.0 seconds. The jogger starts at the origin and runs in the positive direction
    14·1 answer
  • How many miles per day can you walk at a MODERATE Intensity level and your heart rate is 170?
    9·1 answer
  • 3. One effective method for coping with change is using:
    14·1 answer
  • Describe the forces that are acting on a person who is standing still on a sidewalk, and identify whether the forces are balance
    6·1 answer
  • Calculate the efficiency of a light bulb that gives 40J of light from 200J of electrical energy’s
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!