This is just a simple problem finding out the outer surface charge, the inner surface charge and the net charge. Net charge by definition means the difference between two charges. In this case, the formula that is applicable here is outer surface charge = total net charge - inner cavity surface charge. Since we are given already with the net charge equal to 12.0 x10-6 C and the inner charge magnituude f 3.7 x10-6 C, the the total charge must be outer charge is +10x10(-6)) - (-3.0x10(-6)) = +1.3x10(-5) C.
Charges are measured in coloumbs and most likely exist on surfaces of entities like particles, walls etc.
Answer: 50J
Explanation:
Mechanical energy follows the same principles of kinetic energy and potential energy, it is conserved. So Ei = Ef.
Mechanical energy is the sum of ALL energy's. There is no friction, so its just kinetic plus potential.
37.5 + 12.5 = 50J
Since the particle has not touched the ground, it has not transferred any energy to the ground yet, therefore the mechanical energy must still be 50J; mostly in kinetic energy with a very small amount of potential because of the low height relative to the ground.
Answer:
2.43J
Explanation:
Given parameters:
Mass of the arrow = 0.155kg
Velocity = 31.4m /s
Unknown:
Kinetic energy when it leaves the bow = ?
Solution:
The kinetic energy of a body is the energy in motion of the body;
it can be derived using the expression below:
K.E =
m v²
m is the mass
v is the velocity
Solve for K.E;
K.E =
x 0.155 x 31.4 = 2.43J
Explanation:
It is given that,
Diameter of the peach pie, d = 9 inches
Radius of the pie, r = 4.5 inches
The tray is rotated such that the rim of the pie plate moves through a distance of 183 inches, d = 183 inches
Let
is the angular distance that the pie plate has moved through.
It is given by :


Since, 1 radian = 57.29 degrees

Since, 1 radian = 0.159155 revolution

Hence, this is the required solution.