Weight percentage of nitrogen can be calculated using the following rule:
weight percentage of nitrogen = (weight of nitrogen / weight of urea) x 100
From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of nitrogen = 14 grams
molecular mass of hydrogen = 1 grams
molecular mass of oxygen = 16 grams
therefore:
mass of nitrogen in urea = 2(14) = 28 grams
mass of urea = 12 + 2(14) + 4(1) + 16 = 60 grams
Substitute with the masses in the equation to get the percentage:
weight percentage of nitrogen = (28/60) x 100 = 46.667%
Answer:
b. 6.02 x 1023 molecules
Explanation:
The formula mass of ammonia is 14 + 1 × 3 = 17.
The number of moles in 27.6g ammonia is 27.6 ÷ 17 = 1.62 mol.
A mole is 6.02 × 10²³, so the number of hydrogen atoms in a 1.62 moles of ammonia is 1.62 × 6.02 × 10²³ × 3 = 2.93 × 10² atoms.
Answer:
The difference in electronegativity between fluorine (4.0) and hydrogen (2.1) is quite high, so the shared electrons spend much more time in the vicinity of the fluorine atom. As a result, fluorine carries a partial negative charge in this molecule, whereas hydrogen carries a partial positive charge
Explanation:
<span>Mg(ClO2)2 has an atom of magnesium, 2 moles of chlorine and 4 moles of oxygen. </span><span>Al(ClO2)3, on the other hand, is composed of one mole of aluminum, one mole of chlorine and six moles of oxygen. The number of molecules of both is equal to 6.022 x10^23 molecules per mole of the compound.</span>
The statement that describes a chain reaction brought about by a nuclear reaction is "neutrons <span>released during a fission reaction cause other nuclei to split." This is applicable to fission reactions only wherein atoms split and produce neutrons that also cause further atoms to split, thus creating a chain or series of reactions.</span>