Coefficients is your answer. I hope I helped:)
Answer:
cyguu and I will be like that and I
Explanation:
GHG and I will be like them and I will be like this in the best of luck in the pulley system and the same your time and consideration and I will be like them and I will be like them and I will be like them and TFT capacitive touchscreen and I will be in Phone
Answer:
The object would weight 63 N on the Earth surface
Explanation:
We can use the general expression for the gravitational force between two objects to solve this problem, considering that in both cases, the mass of the Earth is the same. Notice as well that we know the gravitational force (weight) of the object at 3200 km from the Earth surface, which is (3200 + 6400 = 9600 km) from the center of the Earth:

Now, if the body is on the surface of the Earth, its weight (w) would be:

Now we can divide term by term the two equations above, to cancel out common factors and end up with a simple proportion:

T=s/v=>t=1500/1,5=1000s
1,5km=1500m
Use the formula M=D×V:
M=10 g/cm³ * 5 cm³ = 50 g
which is more than 40 grams, so the container cannot hold the chain.