If the change in entropy of the surroundings for a process at 451 k and constant pressure is -326 j/k, then heat flow absorbed (in kj) by the system is -147.026kJ.
<h3>What is entropy? </h3>
The entropy of particle is defined as how random it move. It shows the randomness of the system or may be disorders of the system. It is used to measure the unavailable energy for performing useful work.
Unit of entropy = J/K
<h3>Formula:</h3>
∆s = ∆Q/T
where,
∆s = change in entropy of the surrounding = -326J/K
∆Q = heat absorbed from surrounding
T = Temperature = 451K
∆Q = ∆s × T
∆Q = -326 × 451
∆Q = 147,026 J
∆Q = 147.026 kJ
Thus we find that the heat absorbed by the system is 147.026 kJ.
learn more about entropy:
brainly.com/question/14131507
#SPJ1
Answer:
In non-polar covalent bonds, the electrons are equally shared between the two atoms. For atoms with differing electronegativity, the bond will be a polar covalent interaction, where the electrons will not be shared equally.
Explanation:
i did some reasherch so there^^
The answer is b.
Hope that helps :)
Answer:
Concentration, because the amounts of reactants and products remain constant after equilibrium is reached.
Explanation:
The rate of reaction refers to the amount of reactants converted or products formed per unit time.
As the reaction progresses, reactions are converted into products. This continues until equilibrium is attained in a closed system.
When equilibrium is attained, the rate of forward reaction is equal to the rate of reverse reaction, hence the concentration of reactants and products in the system remain fairly constant over time.
When deducing the rate of reaction, concentration of the specie of interest is plotted on the y-axis against time on the x-axis.
I can't actually answer this one if the empirical formula is not given. Luckily, I've found a similar problem from another website. The problem is shown in the picture attached. It shows that the empirical formula is CH₂O. Let's calculate the molar mass of the empirical formula.
Molar mass of E.F = 12 + 2(1) + 16 = 30 g/mol
Then, let's divide this to the molar mass of the molecular formula.
Molar mass of M.F/Molar mass of E.F = 180/30 = 6
Therefore, let's multiply 6 to each subscript in the empirical formula to determine the actual molecular formula.
<em>Actual molecular formula = C₆H₁₂O₆</em>