1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vaieri [72.5K]
3 years ago
13

Firemen are shooting a stream of water at a burning building. A high-pressure hose shoots out the water with a speed of 26.0 m/s

as it leaves the hose nozzle. Once it leaves the hose, the water moves in projectile motion. The firemen adjust the angle of elevation of the hose until the water takes 3.00 to reach a building 41.0m away. You can ignore air resistance; assume that the end of the hose is at ground level.
Required:
a. Find the angle of elevation of the hose.
b. Find the speed in m/s of the water at the highest point in its trajectory.
c. Find the acceleration in m/s^2 of the water at the highest point in its trajectory.
d. How high above the ground in m does the water strike the building?
e. How fast is it moving in m/s just before it hits the building?
Physics
1 answer:
alekssr [168]3 years ago
3 0

Answer:

a) θ = 58.3º

b) vfh = 13.7 m/s

c) g = -9.8 m/s2

d) h = 22.2 m

e) vfb = 15.5 m/s

Explanation:

a)

  • Assuming that gravity is the only influence that causes an acceleration to the water, due to it is always downward, since both directions are independent each other, in the horizontal direction, the water moves at a constant speed.
  • Since the velocity vector has a magnitude of 26.0 m/s, we can find its horizontal component as follows:
  • vₓ₀ = v * cos θ (1)
  • where θ is the angle between the water and the horizontal axis (which we define as the x-axis, being positive to the right).
  • Applying the definition of average velocity, taking the end of the hose like the origin, and making t₀ = 0, we can write the following expression:

        x_{f} = v_{ox} * t = v_{o} * cos \theta * t  (2)

  • Replacing by the givens of xf = 41.0m, t = 3.00 s, and v=26.0 m/s, we can solve for the angle of elevation θ, as follows:

        cos \theta = \frac{x_{f} }{v*t} = \frac{41.0m}{26.0m/s*3.00s} = 0.526 (3)

  • ⇒θ = cos⁻¹ (0.526) = 58.3º (4)

b)

  • At the highest point in its trajectory, just before starting to fall, the vertical component of the velocity is just zero.
  • Since the horizontal component keeps constant during all the journey, we can conclude that the speed at this point is just v₀ₓ, that we can find easily from (1) replacing by the values of v and cos θ, as follows:
  • vₓ₀ = v * cos θ = 26.0 m/s * 0.526 = 13.7 m/s. (5)

c)

  • At any point in the trajectory, the only acceleration present is due to the action of gravity, which accepted value is -9.8 m/s2 (taking the upward direction on the vertical y-axis as positive)

d)

  • Since we know the time when the water strikes the building, it will be the same for the vertical movement, so, we can use the kinematic equation for vertical displacement, as follows:

       \Delta y = v_{oy} * t - \frac{1}{2} *g*t^{2} (6)

  • Our only unknown remains v₀y, which can be obtained in the same way than the horizontal component:
  • v₀y = v * sin θ = 26.0 m/s * 0.85 = 22.1 m/s (7)
  • Replacing (7) in (6), we get:

       \Delta y = 22.1 m/s* 3.0s - \frac{1}{2} *9.8m/s2*(3.00s)^{2} = 22.2 m (8)

e)

  • When the water hits the building the velocity vector, has two components, the horizontal vₓ and the vertical vy.
  • The horizontal component, since it keeps constant, is just v₀x:
  • v₀ₓ = 13.7 m/s
  • The vertical component can be found applying the definition of acceleration (g in this case), solving for the final velocity, as follows:

       v_{fy} = v_{oy} - g*t  (9)

  • Replacing by the time t (a given), g, and  v₀y from (7), we can solve (9) as follows:

       v_{fy} = 22.1 m/s - 9.8m/s2*3.00s = -7.3 m/s  (10)

  • Since we know the values of both components (perpendicular each other), we can find the magnitude of the velocity vector (the speed, i.e. how fast is it moving), applying the Pythagorean Theorem to v₀ₓ and v₀y, as follows:

       v_{f} = \sqrt{(13.7m/s)^{2} +(-7.3m/s)^{2}} = 15.5 m/s (11)

You might be interested in
4. The blades on a fan have a frequency of 15 Hz.
vichka [17]

Answer:

a) 4500 cycles b) 0.0667s c) 6.67s

Explanation:

a) 15 Hz= 15 cycles/ s

   5 mins= 300s

   15 cycles/s * 300s= 4500 cycles

b) Period= 1/ frequency

   Period= 1/ 15 cycles/s

   Period= 0.0667s

c) Period * number of revolutions= time

  0.0667 * 100= 6.67s

6 0
3 years ago
Will Mark Brainliest if Correct PLZ!!!!! A bullet is shot at some angle above the horizontal at an initial velocity of 87m/s on
qaws [65]

Answer:

≅50°

Explanation:

We have a bullet flying through the air with only gravity pulling it down, so let's use one of our kinematic equations:

Δx=V₀t+at²/2

And since we're using Δx, V₀ should really be the initial velocity in the x-direction. So:

Δx=(V₀cosθ)t+at²/2

Now luckily we are given everything we need to solve (or you found the info before posting here):

  • Δx=760 m
  • V₀=87 m/s
  • t=13.6 s
  • a=g=-9.8 m/s²; however, at 760 m, the acceleration of the bullet is 0 because it has already hit the ground at this point!

With that we can plug the values in to get:

760=(87)(cos\theta )(13.6)+\frac{(0)(13.6^{2}) }{2}

760=(1183.2)(cos\theta)

cos\theta=\frac{760}{1183.2}

\theta=cos^{-1}(\frac{760}{1183.2})\approx50^{o}

3 0
3 years ago
That is a difference between a law and a hypothesis?
telo118 [61]

Answer:

<em>A hypothesis</em> is a limited explanation of a phenomenon; a scientific theory is an in-depth explanation of the observed phenomenon.

<em> A law</em> is a statement about an observed phenomenon or a unifying concept, according to Kennesaw State University. ... However, Newton's law doesn't explain what gravity is, or how it works.

5 0
3 years ago
The object represented by this graph is moving
Vinil7 [7]

The object represented by this graph is moving toward the origin at constant velocity.

Option 3.

<u>Explanation:</u>

In the figure, x-axis is representing increase in the time and y-axis is presenting increase in the distance from bottom to up. But the line in the graph which is plotted is decreasing from high distance to small distance with increase in time. So this indicates that as the time is increasing, the distance is decreasing.

And the object is moving toward the origin as the distance of the object motion is found to decrease with increase of time as per the graph. But the slope of the graph is found to be almost constant, this indicates that the velocity of the object is constant. Thus, the object represented by this graph is moving toward the origin at constant velocity.

4 0
3 years ago
Read 2 more answers
Which of the following is equal to an impulse of 15 units?
strojnjashka [21]

Answer:

B) Force = 7.5, Time = 2 is equal to an impulse of 15 units

3 0
3 years ago
Read 2 more answers
Other questions:
  • This question that it pictured
    10·1 answer
  • An aurora occurs when ____
    11·1 answer
  • A bodybuilder loads a bar with 550 Newton’s (125 pounds) of weight and pushes the bar over her head 10 times. Each time she lift
    12·1 answer
  • Most granite has a (blank) of quartz,mica,and feldspar
    8·1 answer
  • Help please! This question is driving me crazy
    5·1 answer
  • Temperatures of gases inside the combustion chamber of a four‑stroke automobile engine can reach up to 1000°C. To remove this en
    5·1 answer
  • For a wave, what term is defined as the maximum height of a crest, or depth of a trough, relative to the normal level
    8·1 answer
  • Two sound waves (wave X and wave Y) are moving through a medium at the same speed. If wave X has a greater frequency than wave Y
    5·1 answer
  • QUESTION 10
    8·1 answer
  • The small spherical planet called "Glob" has a mass of 7.88×10^18 kg and a radius of 6.32×10^4 m. An astronaut on the surface of
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!