1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vaieri [72.5K]
3 years ago
13

Firemen are shooting a stream of water at a burning building. A high-pressure hose shoots out the water with a speed of 26.0 m/s

as it leaves the hose nozzle. Once it leaves the hose, the water moves in projectile motion. The firemen adjust the angle of elevation of the hose until the water takes 3.00 to reach a building 41.0m away. You can ignore air resistance; assume that the end of the hose is at ground level.
Required:
a. Find the angle of elevation of the hose.
b. Find the speed in m/s of the water at the highest point in its trajectory.
c. Find the acceleration in m/s^2 of the water at the highest point in its trajectory.
d. How high above the ground in m does the water strike the building?
e. How fast is it moving in m/s just before it hits the building?
Physics
1 answer:
alekssr [168]3 years ago
3 0

Answer:

a) θ = 58.3º

b) vfh = 13.7 m/s

c) g = -9.8 m/s2

d) h = 22.2 m

e) vfb = 15.5 m/s

Explanation:

a)

  • Assuming that gravity is the only influence that causes an acceleration to the water, due to it is always downward, since both directions are independent each other, in the horizontal direction, the water moves at a constant speed.
  • Since the velocity vector has a magnitude of 26.0 m/s, we can find its horizontal component as follows:
  • vₓ₀ = v * cos θ (1)
  • where θ is the angle between the water and the horizontal axis (which we define as the x-axis, being positive to the right).
  • Applying the definition of average velocity, taking the end of the hose like the origin, and making t₀ = 0, we can write the following expression:

        x_{f} = v_{ox} * t = v_{o} * cos \theta * t  (2)

  • Replacing by the givens of xf = 41.0m, t = 3.00 s, and v=26.0 m/s, we can solve for the angle of elevation θ, as follows:

        cos \theta = \frac{x_{f} }{v*t} = \frac{41.0m}{26.0m/s*3.00s} = 0.526 (3)

  • ⇒θ = cos⁻¹ (0.526) = 58.3º (4)

b)

  • At the highest point in its trajectory, just before starting to fall, the vertical component of the velocity is just zero.
  • Since the horizontal component keeps constant during all the journey, we can conclude that the speed at this point is just v₀ₓ, that we can find easily from (1) replacing by the values of v and cos θ, as follows:
  • vₓ₀ = v * cos θ = 26.0 m/s * 0.526 = 13.7 m/s. (5)

c)

  • At any point in the trajectory, the only acceleration present is due to the action of gravity, which accepted value is -9.8 m/s2 (taking the upward direction on the vertical y-axis as positive)

d)

  • Since we know the time when the water strikes the building, it will be the same for the vertical movement, so, we can use the kinematic equation for vertical displacement, as follows:

       \Delta y = v_{oy} * t - \frac{1}{2} *g*t^{2} (6)

  • Our only unknown remains v₀y, which can be obtained in the same way than the horizontal component:
  • v₀y = v * sin θ = 26.0 m/s * 0.85 = 22.1 m/s (7)
  • Replacing (7) in (6), we get:

       \Delta y = 22.1 m/s* 3.0s - \frac{1}{2} *9.8m/s2*(3.00s)^{2} = 22.2 m (8)

e)

  • When the water hits the building the velocity vector, has two components, the horizontal vₓ and the vertical vy.
  • The horizontal component, since it keeps constant, is just v₀x:
  • v₀ₓ = 13.7 m/s
  • The vertical component can be found applying the definition of acceleration (g in this case), solving for the final velocity, as follows:

       v_{fy} = v_{oy} - g*t  (9)

  • Replacing by the time t (a given), g, and  v₀y from (7), we can solve (9) as follows:

       v_{fy} = 22.1 m/s - 9.8m/s2*3.00s = -7.3 m/s  (10)

  • Since we know the values of both components (perpendicular each other), we can find the magnitude of the velocity vector (the speed, i.e. how fast is it moving), applying the Pythagorean Theorem to v₀ₓ and v₀y, as follows:

       v_{f} = \sqrt{(13.7m/s)^{2} +(-7.3m/s)^{2}} = 15.5 m/s (11)

You might be interested in
In a racquetball game, your opponent repeatedly hits the same type of serve off the front wall and it lands in approximately the
Kaylis [27]

Answer:

b

Explanation:

6 0
2 years ago
Read 2 more answers
Which feature of the sun releases large amounts of magnetic activity that can cause the communication systems of the Earth to ma
mihalych1998 [28]
I would say sunquakes
4 0
3 years ago
Read 2 more answers
Please help on this one?
Lelu [443]

The easiest way to answer this question is just to get the answer first. The answer is A with the added comment that no chemical reaction has taken place.

Layered means that the chemicals are not soluble in one another. B is not the answer.

C is eliminated by what what was said about A.

D a solution is not a pure substance (singular) by itself. There are at least 2 chemicals together.

6 0
2 years ago
Calculate the heat flux (in W/m^2) through a sheet of a metal 14 mm thick if the temperatures at the two faces are 350 and 140°C
ExtremeBDS [4]

Answer:

Explanation:

The rate of conductive heat transfer in watts is:

q = (k/s) A ΔT

where k is the heat conductivity, s is the thickness, A is the area, and ΔT is the temperature difference.

a)

Given k = 52.4 W/m/K, s = 0.014 m, and ΔT = 350-140 = 210 K, we can find q/A:

q/A = (52.4 / 0.014) (210)

q/A = 786,000 W/m²

b)

Given that A = 0.42 m², we can find q:

q = (0.42 m²) (786,000 W/m²)

q = 330,120 W

A watt is a Joule per second.  Convert to Joules per hour:

q = 330,120 J/s * 3600 s/hr

q = 1.19×10⁹ J/hr

c)

If we change k to 1.8 W/m/K:

q = (k/s) A ΔT

q = (1.8 / 0.014) (0.42) (210)

q = 11,340 J/s

q = 4.08×10⁷ J/hr

d)

If k is 52.4 W/m/K and s is 0.024 m:

q = (k/s) A ΔT

q = (52.4 / 0.024) (0.42) (210)

q = 192,570 J/s

q = 6.93×10⁸ J/hr

5 0
3 years ago
Which of the following would be valid reason to NOT build the power plant?
Inessa [10]

Answer:

all of the above

Explanation:

because power plant are the ones that cause pollution,it can also destroy ecosystems for animals,and it cant be built anywhere.

6 0
3 years ago
Read 2 more answers
Other questions:
  • A 250-gram cart starts from rest and rolls down an inclined plane from a height of 0.541m. Determine its speed at the bottom of
    5·1 answer
  • A student is bicycling north along Main Street to school. Another student is timing the bicycling student in order to determine
    15·1 answer
  • The steering wheel is connected to and controls the wheels by the axle.
    9·1 answer
  • In the product 6o2 what does the coefficient mean
    11·2 answers
  • Mary and her younger brother Alex decide to ride the carousel at the State Fair. Mary sits on one of the horses in the outer sec
    13·1 answer
  • Which of the following best describe a generator?
    15·1 answer
  • Explain how these convection currents cause the crust of the Earth to <br> move
    8·1 answer
  • What concerns people in regards to<br> the federal government?
    9·1 answer
  • This is the equation for the formation of magnesium chloride. Mg(s) + 2HCl(l) → MgCl2(aq) + H2(g) Which are the reactants and th
    13·1 answer
  • A tractor of mass 2000kg Pulls a trailer of mass 1500kg. The total frictional force is 3000N and the acceleration of the tractor
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!