They almost entirely reside within galaxies because quasars are a subset of blackholes with a large and fast enough accretion disk to generate a beam of interstellar material perpendicular to itself. This typically only occurs in the largest black holes at the center of galaxies (supermassive blackholes) or at least stellar black holes---which still occur within galaxies because the material is necessary to form them.
1) In the first case, the correct answer is
<span>A.Wavelengths measured would match the actual wavelengths emitted.
In fact, the stars are not moving relative to Earth, so there is no shift in the measured wavelength.
2) In this second case, the correct answer is
</span><span>A.Wavelengths measured would be shorter than the actual wavelengths emitted.
</span>in fact, since the stars in this case are moving towards the Earth, then apparent frequency of their emitted light will be larger than the actual frequency, because of the Doppler effect, according to the formula:
where f0 is the actual frequency, f' the apparent frequency, c the speed of light and vs the velocity of the source (the stars) relative to the obsever (Earth). Vs is negative when the source is moving towards the observer, so the apparent frequency f' is larger than the actual frequency f0. But the wavelength is inversely proportional to the frequency, so the apparent wavelength will be shorter than the actual wavelength.
Answer:
A. They have the same atomic numbers.
Explanation:
Elements are defined based on the atomic number, which is the number of protons in the nucleus: this means that atoms of the same element have always the same number of protons in their nuclei (and so, always the same atomic number).
The other choices are wrong because:
B. They have the same average atomic masses. --> this is false for isotopes, which are atoms of the same element having a different number of neutrons. Since the atomic mass is calculated from the sum of the masses of protons and neutrons in the nucleus, two isotopes of the same element have different atomic mass
C. They have the same number of electron shells. --> this can be false when an atom of an element loses/gains an electron, becoming an ion: in that case, the number of electron shells can change, since the number of electrons has changed.
D. They have the same number of electrons in their outermost shells. --> this is also false in case one of the atoms is an ion, since the number of electrons is different.
Speed = 22.8m/min
= 22.8 / 60
=0.38m/s
time = distance/ speed
= 467/0.38
= 1252.63s