Answer:
Explanation:
We shall first calculate the velocity at height h = 575 m .
acceleration a = 2.2 m /s²
v² = u² + 2 a s
u is initial velocity , v is final velocity , s is height achieved
v² = 0 + 2 x 2.2 x 575
v = 50.3 m /s
After 575 m , rocket moves under free fall so g will act on it downwards
If it travels further by height H
from the relation
v² = u² - 2 g H
v = 0 , u = 50.3 m /s
H = ?
0 = 50.3² - 2 x 9.8 H
H = 129.08 m
Total height attained by rocket
= 575 + 129.08
= 704.08 m .
<span>Melting of ice is an endothermic process, meaning that energy is absorbed. When ice spontaneously melts, ΔH (change in enthalpy) is "positive". ΔS (entropy change) is also positive, because, becoming a liquid, water molecules lose their fixed position in the ice crystal, and become more disorganized. ΔG (free energy of reaction) is negative when a reaction proceeds spontaneously, as it happens in this case. Ice spontaneously melts at temperatures higher than 0°C. However, liquid water also spontaneously freezes at temperatures below 0°C. Therefore the temperature is instrumental in determining which "melting" of ice, or "freezing" of water becomes spontaneous. The whole process is summarized in the Gibbs free energy equation:
ΔG = ΔH – TΔS</span>
Answer:
When you have a cloudy night, the clouds prevent heat from escaping through the atmosphere and into space.
The clouds act like a blanket and trap the heat it, and that is why every time you have a cloudy night, it is always warmer than a clear night.
You could answer this right away IF you knew the length of each wave, right ?
Well, Wavelength = (speed) / (frequency).
Speed = 3 x 10⁸ m/s (the speed of light)
and
Frequency = 90.9 x 10⁶ Hertz.
So the length of each wave is 3 x 10⁸ / 90.9 x 10⁶ meters.
To answer the question, see how many pieces you have to cut
that 1.5 km into, in order for each piece to be 1 wavelength.
It'll be
(1,500 meters) divided by (3 x 10⁸ meters/sec) / (90.9 x 10⁶ Hz)
To divide by a fraction, flip the fraction and then multiply:
(1500 meters) times (90.9 x 10⁶ Hz)/(3 x 10⁸ meters/sec)
= 454.5
Explanation:
Th electric force between charges is inversely proportional to the square of distance between them. It means,

Initial distance, r₁ = 2 cm
Final distance, r₂ = 0.25 cm
Initial force, F₁ = 1 N
We need to find the electric force between charges if the new separation of 0.25 cm. So,

So, the new force is 64 N if the separation between charges is 64 N.