Answer:
The liquid turns to a gas.
Explanation:
If a liquid is heated the particles are given more energy and move faster and faster expanding the liquid. Particles in the middle of the liquid form bubbles of gas in the liquid.
Answer:
the speed of the waves is 150 cm/s
Explanation:
Given;
frequency of the wave, f = 10 Hz = 10
distance between 4 nodes, L = 15.0 cm
The wavelength (λ) of the wave is calculated as follows;
Node to Node = λ/2
L = 2(Node to Node) = (4 Nodes) = 2 (λ/2) = λ
Thus, λ = L = 15.0 cm
The speed (v) of the wave is calculated as follows;
v = fλ
v = 10 Hz x 15.0 cm
v = 150 cm/s
Therefore, the speed of the waves is 150 cm/s
After the great 1906 San Francisco earthquake, geolophysicistHarry Fielding Reid examined the displacement of the ground surface along the San Andreas Fault. He concluded that the quake must have been the result of the elastic reboundof the strain energy in the rocks on either side of the fault.
strain energy is 0. 5x force x (compression) X (compression)
There is a lot of force and a bit of compression when rocks squash up against other rocks causing earthquakes
Answer:
c they obey inverse square law
Answer: 0.72 grams
Explanation: Mass can be extracted from the formula of density. D=M/V where D is density and V is volume. Therefore:
18 g/cm^3 = M(25 cm^3) --> Divide by 18g/cm^3 by 25 cm^3 to isolate mass. --> <u>0.72 =M </u> --> Now, to find out which unit you need to use for mass, just look at the density. You can see it is in g/cm^3, and cm^3 was already used for the volume. Thus, gram units are left, so that will be the unit needed, making the final answer 0.72 grams. Hope this helps :)