Answer:
The maximum potential difference is 186.02 x 10¹⁵ V
Explanation:
formula for calculating maximum potential difference

where;
Ke is coulomb's constant = 8.99 x 10⁹ Nm²/c²
k is the dielectric constant = 2.3
b is the outer radius of the conductor = 3 mm
a is the inner radius of the conductor = 0.8 mm
λ is the linear charge density = 18 x 10⁶ V/m
Substitute in these values in the above equation;

Therefore, the maximum potential difference this cable can withstand is 186.02 x 10¹⁵ V
Answer:
Reflected
Explanation:
I do not have much context here, but reflection is what happens when the sun sets on the water. The rays hit the surface of the water and bounce off, known as refelction.
Have a nice day!
I hope this is what you are looking for, but if not - comment! I will edit and update my answer accordingly. (ノ^∇^)
- Heather
-
Eddy Current Testing
Introduction
Basic Principles
History of ET
Present State of ET
The Physics
Properties of Electricity
Current Flow & Ohm's Law
Induction & Inductance
Self Inductance
Mutual Inductance
Circuits & Phase
Impedance
Depth & Current Density
Phase Lag
Instrumentation
Eddy Current Instruments
Resonant Circuits
Bridges
Impedance Plane
Display - Analog Meter
Probes (Coils)
Probes - Mode of Operation
Probes - Configuration
Probes - Shielding
Coil Design
Impedance Matching
Procedures Issues
Reference Standards
Signal Filtering
Applications
Surface Breaking Cracks
SBC using Sliding Probes
Tube Inspection
Conductivity
Heat Treat Verification
Thickness of Thin Mat'ls
Thickness of Coatings
Advanced Techniques
Scanning
Multi-Frequency Tech.
Swept Frequency Tech.
Pulsed ET Tech.
Background Pulsed ET
Remote Field Tech.
Quizzes
Formulae& Tables
EC Standards & Methods
EC Material Properties
-
Current Flow and Ohm's Law
Ohm's law is the most important, basic law of electricity. It defines the relationship between the three fundamental electrical quantities: current, voltage, and resistance. When a voltage is applied to a circuit containing only resistive elements (i.e. no coils), current flows according to Ohm's Law, which is shown below.
I = V / R 
Where:
I =
Electrical Current (Amperes)
V =
Voltage (Voltage)
R =
Resistance (Ohms)
Ohm's law states that the electrical current (I) flowing in an circuit is proportional to the voltage (V) and inversely proportional to the resistance (R). Therefore, if the voltage is increased, the current will increase provided the resistance of the circuit does not change. Similarly, increasing the resistance of the circuit will lower the current flow if the voltage is not changed. The formula can be reorganized so that the relationship can easily be seen for all of the three variables.
The Java applet below allows the user to vary each of these three parameters in Ohm's Law and see the effect on the other two parameters. Values may be input into the dialog boxes, or the resistance and voltage may also be varied by moving the arrows in the applet. Current and voltage are shown as they would be displayed on an oscilloscope with the X-axis being time and the Y-axis being the amplitude of the current or voltage. Ohm's Law is valid for both direct current (DC) and alternating current (AC). Note that in AC circuits consisting of purely resistive elements, the current and voltage are always in phase with each other.
Exercise: Use the interactive applet below to investigate the relationship of the variables in Ohm's law. Vary the voltage in the circuit by clicking and dragging the head of the arrow, which is marked with the V. The resistance in the circuit can be increased by dragging the arrow head under the variable resister, which is marked R. Please note that the vertical scale of the oscilloscope screen automatically adjusts to reflect the value of the current.
See what happens to the voltage and current as the resistance in the circuit is increased. What happens if there is not enough resistance in a circuit? If the resistance is increased, what must happen in order to maintain the same level of current flow?
Taking notes,because you can read back on what you learned
Answer:
E. Student 1 is correct, because as θ is increased, h is the same.
Explanation:
Here we have the object of a certain mass falling under gravity so the force acting on the it will depend on mass of the object and the acceleration due to gravity.
Mathematically:

As we know that the work done is evaluated as the force applied on a body and the displacement of the body in the direction of the force.
And for work we have:

where:
displacement of the object
angle between the force and displacement vectors
Given that the height of the object is same in each trail of falling object under the gravity be it a free-fall or the incline plane.
- In case of free-fall the angle between the force is and the displacement is zero.
- In case when the body moves along the inclined plane the force applied by the gravity is same because it depends upon the mass of the object. And the net displacement in the direction of the gravitational force is the height of the object which is constant in both the cases.
So, the work done by the gravitational force is same in the two cases.