Answer:
Chemical reaction involves the breaking of bonds in the reactants and formation of bonds in the products. ... If a reaction is exothermic, more energy is released when the bonds of the products are formed than it takes to break the bonds of the reactants. This is the reason for temperature change during a reaction.
Explanation:
Here are just a few everyday demonstrations that temperature changes the rate of chemical reaction: Cookies bake faster at higher temperatures. Bread dough rises more quickly in a warm place than in a cool one.
<span>There is five main area of study in Chemistry, these are:
Analytical, this focusses on experimental equipment and methods used in chemistry (e.g., NMR, Spectroscopic methods, etc.)
Biochemistry - focuses on the chemistry of compounds and processes in living things (e.g., amino acids, proteins, DNA, cellular respiration, Krebs cycle, etc.)
Organic - focuses on the chemistry on most carbon-based molecules found in living things (e.g., hydrocarbons, alcohols, carbolic acids. Amines, ester, etc.)
Inorganic - (focuses on all elements other than carbon (e.g., fluorine, silicon, xenon, etc.)
Physical - focuses on the basic structure and energetic son atoms and molecules (e.g., subatomic structure, is nice and covalent bonding, thermodynamics, reactions, etc.)</span>
The answer is A how it react with other chemicals
❤️
<span>This
really depends on how closely related the species are. Species from vastly
unrelated taxonomic groups are likely to have organs that differ substantially.
Think for example of the compound eye of a spider and the eye of a human, or
the bones of a fish compared to the cartilage of a shark. These are examples of species that are not closely related at all. Then think of a chimpanzee and a human. The organs of both species are very similar in form and function as they are closely related. </span>