<span>inorganic
Let's look at the choices and see why they work, or don't work.
monosaccharide
* Otherwise known as a simple sugar. And NaCl is definitely not a sugar of any type. So this is wrong.
disaccharide
* Complex sugar. And NaCl doesn't qualify either.
organic
* A definition of an organic compound is one that has carbon in it. NaCl has sodium and chlorine. No carbon at all, so this isn't the right answer. And I wish that organic was an earlier choice, since the sugars mentioned above are organic compounds.
inorganic
* This is the only possible choice. Salt is not an organic compound since it doesn't have carbon. So it can't be a sugar either. But it can and is inorganic.</span>
Answer:
the particles of the rock possess kinetic energy as they stay in a place the particles also contain potential energy due to their position and arrangement This form of stored energy is responsible for keeping the particles together
Explanation:
hop it helps
1 Hydrogen 1s1
2 Helium 1s2
3 Lithium 2s1
Answer:
14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.
Explanation:
The heat Q that is necessary to provide for a mass m of a certain substance to change phase is equal to Q = m*L, where L is called the latent heat of the substance and depends on the type of phase change.
During the evaporation process, a substance goes from a liquid to a gaseous state and needs to absorb a certain amount of heat from its immediate surroundings, which results in its cooling. The heat absorbed is called the heat of vaporization.
So, it is called "heat of vaporization", the energy required to change 1 gram of substance from a liquid state to a gaseous state at the boiling point.
In this case, being:
- L= 84
and replacing in the expression Q = m*L you get:
Q=172 g*84
Q=14,448 J
<u><em>14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.</em></u>
Answer:
See Explanation
Explanation:
Mathematically, this means to combine like terms, such as terms with the same variable. In chemistry, this can refer to polar objects combining with polar objects while nonpolar objects combine with nonpolar objects.