Answer:
It is (1/5)th as much.
Explanation:
If we apply the equation
F = G*m*M / r²
where
m = mass of a man
M₀ = mass of the planet Driff
M = mass of the Earth
r₀ = radius of the planet Driff
r = radius of the Earth
G = The gravitational constant
F = The gravitational force on the Earth
F₀ = The gravitational force on the planet Driff
g = the gravitational acceleration on the surface of the earth
g₀ = the gravitational acceleration on the surface of the planet Driff
we have
F₀ = G*m*M₀ / r₀² = G*m*(5*M) / (5*r)²
⇒ F₀ = G*m*M / (5*r²) = (1/5)*F
If
F₀ = (1/5)*F
then
W₀ = (1/5)*W ⇒ m*g₀ = (1/5)*m*g ⇒ g₀ = (1/5)*g
It is (1/5)th as much.
Answer:
a) 23.2 e V
b) energy of the original photon is 36.8 eV
Explanation:
given,
energy at ground level = -13.6 e V
energy at first exited state = - 3.4 e V
A photon of energy ionized from ground state and electron of energy K is released.
h ν₁ - 13.6 = K
K combine with photon in first exited state giving out photon of energy
= 26.6 e V
h c = 6.626 × 10⁻³⁴ × 3 × 10⁸ = 12400 e V A°
K + ( 3.4 ) = 26.6 e V
a) energy of free electron
K = 26.6 - 3.4 = 23.2 e V
b) energy of the original photon
h ν₁ - 13.6 = K
h ν₁ = 23.2 + 13.6
= 36.8 e V
energy of the original photon is 36.8 eV
<span>The primary reason a light bulb emits light is due to the heating of the resistance in the filament of the light bulb. In fact, the power dissipated in a resistor is given by
</span>

<span>where I is the current and R the resistance. The larger the resistance or the current in the resistor, the larger the power dissipated. Due to this dissipation of power, the temperature of the filament becomes very high, and the resistance becomes incandescent, emitting light.</span>
Answer:
Friction
Explanation:
Friction is a force that slows down moving objects. If you roll a ball across a shaggy rug, you can see that there are lumps and bumps in the rug that make the ball slow down. The rubbing, or friction, between the ball and the rug is what makes the ball stop rolling. External Force is required.