Explanation:
will dissociate into ions as follows.

Hence,
for this reaction will be as follows.
![K_{sp} = [Pb^{2+}][Br^{-}]^{2}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BPb%5E%7B2%2B%7D%5D%5BBr%5E%7B-%7D%5D%5E%7B2%7D)
We take x as the molar solubility of
when we dissolve x moles of solution per liter.
Hence, ionic molarities in the saturated solution will be as follows.
=
+ x
=
+ 2x
So, equilibrium solubility expression will be as follows.
=
Each sodium bromide molecule is giving one bromide ion to the solution. Therefore, one solution contains
= 0.10 and there will be no lead ions. So,
= 0
So,
will approximately equals to
.
Hence, ![K_{sp} = x[Br^{-}]^{2}_{o}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20x%5BBr%5E%7B-%7D%5D%5E%7B2%7D_%7Bo%7D)

x =
M
Thus, we can conclude that molar solubility of
is
M.
<u>We are given:</u>
M1 = 3 Molar V1 = 80 mL
M2 = x Molar V2 = 100 mL
<u>Finding the molarity:</u>
We know that:
M₁V₁ = M₂V₂
where V can be in any units
(3)(80) = (x)(100)
x = 240/100 [dividing both sides by 100]
x = 2.4 Molar
Ocean-dwelling I would say.
<h2>Answer:</h2>
In both glasses have juices of same mass. But the temperature is different due to which the kinetic energy of molecules in both glasses is different.
As kinetic energy is directly proportional to temperature.
To make the kinetic energy of the molecules equal she should:
- Heat one glass of 25°C to 40°C.
or
- Cool the juice of 40°C to 25°C
Since water is already at 100<span>°C all the energy is used to evaporate it.
Now we can calculate how many </span>mols of water are evaporated with 820kJ.

We calculated that we got 20 mols of water evaporated. Now, all we have to do is find how many grams is a mol of water. Molar mass of water is <span>20.16 g/mol.
</span>The final answer is: