Answer:
The average linear velocity (inches/second) of the golf club is 136.01 inches/second
Explanation:
Given;
length of the club, L = 29 inches
rotation angle, θ = 215⁰
time of motion, t = 0.8 s
The angular speed of the club is calculated as follows;

The average linear velocity (inches/second) of the golf club is calculated as;
v = ωr
v = 4.69 rad/s x 29 inches
v = 136.01 inches/second
Therefore, the average linear velocity (inches/second) of the golf club is 136.01 inches/second
Answer:
I was going to give you the paper where I saw it but since you are not giving enough points I can not give you so I am only going to give you some of these that are here sorry
Explanation:
1.

x=5

7.
5,12,13
9.

We can calculate this with the law of conservation of energy. Here we have a food package with a mass m=40 kg, that is in the height h=500 m and all of it's energy is potential. When it is dropped, it's potential energy gets converted into kinetic energy. So we can say that its kinetic and potential energy are equal, because we are neglecting air resistance:
Ek=Ep, where Ek=(1/2)*m*v² and Ep=m*g*h, where m is the mass of the body, g=9.81 m/s² and h is the height of the body.
(1/2)*m*v²=m*g*h, masses cancel out and we get:
(1/2)*v²=g*h, and we multiply by 2 both sides of the equation
v²=2*g*h, and we take the square root to get v:
v=√(2*g*h)
v=99.04 m/s
So the package is moving with the speed of v= 99.04 m/s when it hits the ground.
The answer is B) <span>equilibrium
hope this helps!=-)</span>
Answer:
El neumático soportará una presión de 1.7 atm.
Explanation:
Podemos encontrar la presión final del neumático usando la ecuación del gas ideal:

En donde:
P: es la presión
V: es el volumen
n: es el número de moles del gas
R: es la constante de gases ideales
T: es la temperatura
Cuando el neumático soporta la presión inicial tenemos:
P₁ = 1.5 atm
T₁ = 300 K
(1)
La presión cuando T = 67 °C es:
(2)
Dado que V₁ = V₂ (el volumen del neumático no cambia), al introducir la ecuación (1) en la ecuación (2) podemos encontrar la presión final:
Por lo tanto, si en el transcurso de un viaje las ruedas alcanzan una temperatura de 67 ºC, el neumático soportará una presión de 1.7 atm.
Espero que te sea de utilidad!