1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vazorg [7]
3 years ago
12

If you know the distance an object has traveled in a certain amount of time you can determine

Physics
2 answers:
lidiya [134]3 years ago
6 0
You can determine the velocity it is moving at. 

Nutka1998 [239]3 years ago
5 0
With that information, you can determine the object's speed.
Just divide the distance covered by the time to cover the distance.

If you also know the direction the object moved, then you can
determine its velocity.  If you don't, then you can't.
You might be interested in
A ball is dropped off the balcony of a hotel room and it takes 2.8s to fall to the ground . how high above the ground is the bal
RideAnS [48]

The height of the ball above the ground is 38.45 m

First we will calculate the velocity of the ball when it touch the ground by using first equation of motion

v=u+gt

v=0+9.81×2.8

v=27.468 m/s

now the height of the ground can be calculated by the formula

v=√2gh

27.468=√2×9.81×h

h=38.45 m

5 0
3 years ago
A top-fuel dragster starts from rest and has a constant acceleration of 42.0 m/s2. What are (a) the final velocity of the dragst
disa [49]

Answer:

a)  Final velocity of the dragster at the end of 1.8 s = 75.6 m/s

b) Final velocity of the dragster at the end of 3.6 s = 151.2 m/s

c) The displacement of the dragster at the end of 1.8 s = 68.04 m

d) The displacement of the dragster at the end of 3.6 s = 272.16 m

Explanation:

a) We have equation of motion v = u + at

  Initial velocity, u =  0 m/s

 Acceleration , a = 42 m/s²

 Time = 1.8 s    

Substituting

  v = u + at

  v  = 0 + 42 x 1.8 = 75.6 m/s

Final velocity of the dragster at the end of 1.8 s = 75.6 m/s

b) We have equation of motion v = u + at

  Initial velocity, u =  0 m/s

 Acceleration , a = 42 m/s²

 Time = 3.6 s    

Substituting

  v = u + at

  v  = 0 + 42 x 3.6 = 75.6 m/s

Final velocity of the dragster at the end of 3.6 s = 151.2 m/s

c) We have equation of motion s= ut + 0.5 at²

  Initial velocity, u =  0 m/s

 Acceleration , a = 42 m/s²

 Time = 1.8 s    

Substituting

   s= ut + 0.5 at²

    s = 0 x 1.8 + 0.5 x 42 x 1.8²

    s = 68.04 m

The displacement of the dragster at the end of 1.8 s = 68.04 m

d) We have equation of motion s= ut + 0.5 at²

  Initial velocity, u =  0 m/s

 Acceleration , a = 42 m/s²

 Time = 3.6 s    

Substituting

   s= ut + 0.5 at²

    s = 0 x 3.6 + 0.5 x 42 x 3.6²

    s = 272.16 m

The displacement of the dragster at the end of 3.6 s = 272.16 m

3 0
2 years ago
5.An ice skater pushes against a wall with a force of 59 N. Ignoring friction, if the ice skater has
natali 33 [55]

Answer:

<em>Answer: (A) 0.75 m/s^2</em>

Explanation:

The Second Newton's law states that an object acquires acceleration when an external unbalanced net force is applied to it.

That acceleration is proportional to the net force and inversely proportional to the mass of the object.

It can be expressed with the formula:

\displaystyle a=\frac{F_n}{m}

Where

Fn = Net force

m  = mass

The ice skater pushes against a wall with a force of 59 N. The wall returns the force and the skater now has a net force of Fn=59 N that makes him accelerate. Being m=79 kg the mass of the skater, the acceleration is:

\displaystyle a=\frac{59}{79}

a = 0.75\ m/s^2

Answer: (A) 0.75 m/s^2

5 0
3 years ago
Under ideal conditions (no atmospheric interference of any kind), if I hit a golf ball at an angle of 25 degrees at an initial s
g100num [7]

Answer:

The required angle is (90-25)° = 65°

Explanation:

The given motion is an example of projectile motion.

Let 'v' be the initial velocity and '∅' be the angle of projection.

Let 't' be the time taken for complete motion.

Let 'g' be the acceleration due to gravity

Taking components of velocity in horizontal(x) and vertical(y) direction.

v_{x} =  v cos(∅)

v_{y} =  v sin(∅)

We know that for a projectile motion,

t =\frac{2vsin(∅)}{g}

Since there is no force acting on the golf ball in horizonal direction.

Total distance(d) covered in horizontal direction is -

d = v_{x}×t = vcos(∅)×\frac{2vsin(∅)}{g} = \frac{v^{2}sin(2∅) }{g}.

If the golf ball has to travel the same distance 'd' for same initital velocity v = 23m/s , then the above equation should have 2 solutions of initial angle 'α' and 'β' such that -

α +β = 90° as-

d = \frac{v^{2}sin(2α) }{g} = \frac{v^{2}sin(2[90-β]) }{g} =\frac{v^{2}sin(180-2β) }{g} = \frac{v^{2}sin(2β) }{g} .

∴ For the initial angles 'α' or 'β' , total horizontal distance 'd' travelled remains the same.

∴ If α = 25° , then

     β = 90-25 = 65°

∴ The required angle is 65°.

5 0
3 years ago
Read 2 more answers
The majority of the sun's energy that reaches Earth is __________. View Available Hint(s) The majority of the sun's energy that
Lera25 [3.4K]

Answer:

not captured for use by living things

Explanation:

The sun is a star with a high radiation and most of(around 55-67%) the radiation that reaches the earth is usually reflected back. The earth cannot use all the energy that reaches the earth. It uses almost around 15-30%

3 0
3 years ago
Other questions:
  • If a project team decided that a drugstore would earn the LT Credit—LEED for Neighborhood Development Location, what other Locat
    9·1 answer
  • I am trying to find the magnitude of a resultant vector. Do i take inconsideration the negatives when i find the x &amp; y compo
    6·1 answer
  • A bat can detect small objects such as an insect whose size is approximately equal to the wavelength of the sound the bat makes.
    6·1 answer
  • How does an octopus or a squid uses Newton's third law of motion to escape from enemies
    6·1 answer
  • How does an airbag help protect a passenger in a car following a car accident?
    12·2 answers
  • During science class, Ava and Justin were discussing the rotation of the Sun and debating over which model would best illustrate
    15·1 answer
  • A rocket is moving at 1/4 the speed of light relative to Earth. At the center of this rocket a light suddenly flashes. To an obs
    10·2 answers
  • I don’t understand what i need to fill in on the right side of the image?
    14·1 answer
  • What is the kinetie energy of a 3-kilogram ball that is rolling at 2 meters per second?
    9·1 answer
  • ME Project- Decomposer
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!