Hey there!
Oxygen has a molar mass of 16. That means 16g of oxygen is 1 mole.
32.6 ÷ 16 = 2.0375 moles
We have 2.0375 moles.
There are 6.022 x 10²³ atoms in one mole.
2.0375 x 6.022 x 10²³
1.3 x 10²⁴
There are 1.3 x 10²⁴ atoms in 32.6 grams of oxygen.
Hope this helps!
Answer:
Molar absorptivity or molar extinction co-effecient = 2120.14 cm⁻¹M⁻¹
Explanation:
First convert Concentration from ppm inM or mol/l
⇒ Molar mass of KMnO₄ = 158.03 g
⇒ 4.48 ppm = 4.48 mg/l = 4.48 x 10⁻³ g/l
⇒ Molarity =
= 2.83 x 10⁻⁵ molar
Absorbance (A) = - log(T) ( T = % transmittance)
= - log(0.859)
= 0.06
According to Lambert Beer's law
ε = 
or, ε = 
or, ε = 2120.14 cm⁻¹M⁻¹
Where
ε = Molar absorptivity
A = absorbance
C = Molar concentration of KMnO₄ solution
l = length
<span>They should all be eukaryotic.</span>
Answer:
he major types of connective tissue are connective tissue proper, supportive tissue, and fluid tissue. Loose connective tissue proper includes adipose tissue, areolar tissue, and reticular tissue.
Explanation:
This is a redox reaction, meaning reduction-oxidation reaction. This represents the reaction in one side of the electrode in an electrolysis set-up. First, we find the oxidation number of Cu in CuSO4:
(ox. # of Cu)+ ox.# of S + 4(ox.# of oxygen) = 0
(ox. # of Cu) + (6) + 4(-2) = 0
ox. # of Cu = 2+
CuSO4 ---> Cu + SO42-
Cu2+ + SO42- ----> Cu + SO42-
Cu2+ -----> Cu + 2e- (net ionic reaction)
The stoichiometric equation would be 2 electrons per mole Copper. Copper has a molar mass of <span>63.5 g/mol. Then, it would only need 2 electrons.
</span>