Answer:
Energy is found as:
E = 1.987·10⁻¹⁹ J
Explanation:
Energy of a single photon of infrared light can be found by using the following formula:

where
E = in Joules
h = Planck's constant = 6.627×10 ⁻³⁴ J
f = frequency in hertz
It can also be written as:

where
c = 2.998×10⁸ ms⁻¹
λ = wavelength
Wavelength is given in the question which is:
λ = 1×10⁻⁶m
Substitute all the values in the Energy formula

Answer:
In the - j direction, that is negative of the y-axis
Explanation:
As typed in the question, the position of the object is given by the expression in three component ( i, j, k) form:
r (t) = 5 i - (t + 1 ) j + t^3 k
and since the velocity is the derivative of position with respect to time, by doing the derivative of this expression we get:
v(t) = 0 i - 1 j +3 t^2 k
which for the initial velocity requested (that is at time zero) we have:
v(t) = 0 i - 1 j +3 (0)^2 k = = 1 j
Then the direction of the initial velocity is entirely in the direction of the j versor, that is pointing to the negative of the y-axis.
The loss or conservation of kinetic energy is the difference between an elastic and an inelastic collision. Kinetic energy is not preserved in an inelastic collision, and it will change forms into sound, heat, radiation, or another form. The kinetic energy in an elastic collision is preserved and does not change forms.
Answer:
His average speed is 0.15 kilometer per minute or 2.5 meters per second.
Explanation:
average speed = distance/time
x = 3 km/20 minutes
x = 0.15
—
x = 3000 m/1200 s
x = 2.5