1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
storchak [24]
3 years ago
8

A student drops a ball off the top of building and records that the ball takes 3.32s to reach the ground (g = 9.8 m/s^2). What i

s the ball speed just before hitting the ground?​
Physics
1 answer:
slega [8]3 years ago
7 0

Answer:

Explanation:

Here's what we know because it was given to us:

a = -9.8 m/s/s and

time = 3.32 seconds

Here's what we know because we rock physics:

v₀ = 0 (because the object was held still before it was dropped).

Here's the equation that ties all that info together in a single one-dimensional equation:

v = v₀ + at

Filling in and solving for v:

v = 0 + (-9.8)(3.32) and

v = -33m/s

The velocity is negative because the object is moving downwards and up is positive (but you knew that already too!)

You might be interested in
If two charged balloons are 24cm apart and they feel a force of electrical repulsion of 20N, what would the force of electrical
OverLord2011 [107]

Answer:

Soory

Explanation:

I really dont know but i will send you wait

5 0
3 years ago
A wall in a house contains a single window. The window consists of a single pane of glass whose area is 0.15 m2 and whose thickn
KengaRu [80]

Answer:

88 %

Explanation:

The rate of heat loss by a conducting material of thermal conductivity K, cross-sectional area,A and thickness d with a temperature gradient ΔT is given by

P = KAΔT/d

The total heat lost by the styrofoam wall is P₁ = K₁A₁ΔT₁/d₁ where K₁ =thermal conductivity of styrofoam wall 0.033 W/m-K, A₁ = area of styrofoam wall = 17 m², ΔT₁ = temperature gradient between inside and outside of the wall and d₁ = thickness of styrofoam wall = 0.20 m

The total heat lost by the glass window is P₂ = K₂A₂ΔT₂/d₂ where K₂ =thermal conductivity of glass window pane wall 0.96 W/m-K, A₂ = area of glass window pane = 0.15 m², ΔT₂ = temperature gradient between inside and outside of the window and d₂ = thickness of glass window pane = 7 mm = 0.007 m

The total heat lost is P = P₁ + P₂ = K₁A₁ΔT₁/d₁ + K₂A₂ΔT₂/d₂

Now, since the temperatures of both inside and outside of both window and wall are the same, ΔT₁ = ΔT₂ = ΔT

So, P = K₁A₁ΔT/d₁ + K₂A₂ΔT/d₂

Since P₂ = K₂A₂ΔT₂/d₂ = K₂A₂ΔT/d₂is the heat lost by the window, the fraction of the heat lost by the window from the total heat lost is

P₂/P = K₂A₂ΔT/d₂ ÷ (K₁A₁ΔT/d₁ + K₂A₂ΔT/d₂)

= 1/(K₁A₁ΔT/d₁÷K₂A₂ΔT/d₂ + 1)

= 1/(K₁A₁d₂÷K₂A₂d₁ + 1)

= 1/[(0.033 W/m-K × 17 m² × 0.007 m ÷ 0.96 W/m-K × 0.15 m² × 0.20 m) + 1]

= 1/(0.003927/0.0288 + 1)

= 1/(0.1364 + 1)

= 1/1.1364

= 0.88.

The percentage is thus P₂/P × 100 % = 0.88 × 100 % = 88 %

The percentage of heat lost by window of the total heat is 88 %

6 0
3 years ago
A) Charge q1 = +5.60 nC is on the x-axis at x = 0 and an unknown charge q2 is on the x-axis at x = -4.00 cm. The total electric
jeka94

Answer:

a) F₃₁ = 63.0 μN  

b) F₃₂ = - 14.0 μN

c) q₂ = - 5.0 nC

Explanation:

a)

  • Assuming that the three charges can be taken as point charges, the forces between them must obey Coulomb's Law, and can be found independent each other, applying the superposition principle.
  • So, we can find the force that q₁ exerts along the x-axis on q₃, as follows:

       F_{31} =\frac{k*q_{1}*q_{3} }{r_{13}^{2}} = \frac{9e9Nm2/C2*5.6e-9C*2.0e-9C}{(0.04m)^{2}}  = 63.0 \mu N   (1)

b)

  • Since total force exerted by q₁ and q₂ on q₃ is 49.0 μN, we can find the force exerted only by q₂ (which is along the x-axis only too) just by difference, as follows:

      F_{32} = F_{3} - F_{31}  = 49.0\mu N  - 63.0\mu N = -14.0 \mu N  (2)

c)

  • Finally, in order to find the value of q₂, as we know the value and sign of F₃₂, we can apply again the Coulomb's Law, solving for q₂, as follows:

      q_{2}  = \frac{F_{32} * r_{23}^{2} }{k*q_{3}} = \frac{(-14\mu N)*(0.08m)^{2}}{9e9Nm2/C2* 2 nC} = - 5 nC  (3)

6 0
3 years ago
A constant 20 N force is applied to a 7 kg box to push it along the ground. How
Elis [28]

Answer:

40 joules

Explanation:

Work Done=Force*Distance

6 0
3 years ago
Classyfying— what is the name of the force you exert on a sponge when you squeeze it?
Kruka [31]
Its called compression
5 0
3 years ago
Read 2 more answers
Other questions:
  • To travel from australia to south africa which direction would you go
    14·1 answer
  • If a true heading of 135° results in a ground track of 130° and a true airspeed of 135 knots results in a groundspeed of 140 kno
    5·1 answer
  • Two forces (4n and 3n) pull to the left while a 12n force pulls to the right. What is the net force?
    13·2 answers
  • A large box has a mass of 500kg and the coefficient of static friction for the box and the floor is 0.45, and the coefficient of
    7·1 answer
  • LED light bulbs are more energy efficient, last longer, cost more, and have a smaller environmental impact from manufacture to r
    15·1 answer
  • An iron is made up of particles. What is true about the particles?
    14·1 answer
  • What can we conclude from the attractive nature of the force between a positively charged rod and an object?
    5·1 answer
  • Define physical quantity​
    10·2 answers
  • Combustion is an example of ______ to_______ energy conversion.
    11·1 answer
  • When you are making cold calls while job hunting, be
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!