1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
storchak [24]
3 years ago
8

A student drops a ball off the top of building and records that the ball takes 3.32s to reach the ground (g = 9.8 m/s^2). What i

s the ball speed just before hitting the ground?​
Physics
1 answer:
slega [8]3 years ago
7 0

Answer:

Explanation:

Here's what we know because it was given to us:

a = -9.8 m/s/s and

time = 3.32 seconds

Here's what we know because we rock physics:

v₀ = 0 (because the object was held still before it was dropped).

Here's the equation that ties all that info together in a single one-dimensional equation:

v = v₀ + at

Filling in and solving for v:

v = 0 + (-9.8)(3.32) and

v = -33m/s

The velocity is negative because the object is moving downwards and up is positive (but you knew that already too!)

You might be interested in
A motorcycle is following a car that is traveling at constant speed on a straight highway. Initially, the car and the motorcycle
xz_007 [3.2K]

Answer:

a) \Delta{t} = 5.39s

b) the motorcycle travels 155 m

Explanation:

Let t_2-t_1 = \Delta{t}, then consider the equation of motion for the motorcycle (accelerated) and for the car (non accelerated):

v_{m2}=v_0+a\Delta{t}\\x+d=(\frac{v_0+v_{m2}}{2} )\Delta{t}\\v_c = v_0 = \frac{x}{\Delta{t}}

where:

v_{m2} is the speed of the motorcycle at time 2

v_{c} is the velocity of the car (constant)

v_{0} is the velocity of the car and the motorcycle at time 1

d is the distance between the car and the motorcycle at time 1

x is the distance traveled by the car between time 1 and time 2

Solving the system of equations:

\left[\begin{array}{cc}car&motorcycle\\x=v_0\Delta{t}&x+d=(\frac{v_0+v_{m2}}{2}}) \Delta{t}\end{array}\right]

v_0\Delta{t}=\frac{v_0+v_{m2}}{2}\Delta{t}-d \\\frac{v_0+v_{m2}}{2}\Delta{t}-v_0\Delta{t}=d\\(v_0+v_{m2})\Delta{t}-2v_0\Delta{t}=2d\\(v_0+v_0+a\Delta{t})\Delta{t}-2v_0\Delta{t}=2d\\(2v_0+a\Delta{t})\Delta{t}-2v_0\Delta{t}=2d\\a\Delta{t}^2=2d\\\Delta{t}=\sqrt{\frac{2d}{a}}=\sqrt{\frac{2*58}{4}}=\sqrt{29}=5.385s

For the second part, we need to calculate x+d, so you can use the equation of the car to calculate x:

x = v_0\Delta{t}= 18\sqrt{29}=96.933m\\then:\\x+d = 154.933

3 0
3 years ago
Which scientific activities will Juno conduct on its trip to Jupiter? Check all that apply.
Arisa [49]

Explanation:

Hope this helps,

Juno entered a polar orbit of Jupiter on July 5th 2016 UTC, to begin a scientific investigation of the planet. After completing its mission, Juno will be intentionally deorbited into Jupiters atmosphere. Junos mission is to measure Jupiters composition, gravitational field, magnetic field, and polar magnetosphere.

5 0
2 years ago
Read 2 more answers
When light of wavelength 240 nm falls on a cobalt surface, electrons having a maximum kinetic energy of 0.17 eV are emitted. Fin
dusya [7]

Answer:

(a) 5.04 eV (B) 248.14 nm (c) 1.21\times 10^{15}Hz

Explanation:

We have given Wavelength of the light  \lambda = 240 nm

According to plank's rule ,energy of light

E = h\nu = \frac{hc}{}\lambda

E = h\nu = \frac{6.67\times 10^{-34} J.s\times 3\times 10^{8}m/s}{ 240\times 10^{-9} m\times 1.6\times 10^{-19}J/eV}= 5.21 eV

Maximum KE of emitted electron i= 0.17 eV

Part( A) Using Einstien's equation

E = KE_{max}+\Phi _{0}, here \Phi _0 is work function.

\Phi _{0}=E - KE_{max}= 5.21 eV-0.17 eV = 5.04 eV

Part( B) We have to find cutoff wavelength

\Phi _{0} = \frac{hc}{\lambda_{cuttoff}}

\lambda_{cuttoff}= \frac{hc}{\Phi _{0} }

\lambda_{cuttoff}= \frac{6.67\times 10^{-34} J.s\times 3\times 10^{8}m/s}{5.04 eV\times 1.6\times 10^{-19}J/eV }=248.14 nm

Part (C) In this part we have to find the cutoff frequency

\nu = \frac{c}{\lambda_{cuttoff}}= \frac{3\times 10^{8}m/s}{248.14 \times 10^{-19} m }= 1.21\times 10^{15} Hz

5 0
3 years ago
What happens when two forces act in the same direction?
Wewaii [24]

Using the picture provided the forces are added together, because they are putting force on an object the same direction, thus the forces are added.

5 0
2 years ago
Read 2 more answers
What speed would a proton need to achieve in order to circle Earth 1790 km above the magnetic equator, where the Earth's mag- ne
irinina [24]

Answer:

The velocity is 31.25 m/s and direction is toward west.

Explanation:

Given that,

Distance h= 1790 km = 1.790\times10^{6}\ m

Magnetic field B=4\times10^{-8}\ T

Mass of proton m=1.673\times10^{-21}\ Kg

Radius of earth R =6.38\times10^{6}\ m

Radius of orbit r=R+h

r=6.38\times10^{6}+1.790\times10^{6}

r=8170000\ m

We need to calculate the speed

Using formula of magnetic field

Bvq=\dfrac{mv^2}{r}

v=\dfrac{Bqr}{m}

Put the value into the formula

v=\dfrac{4\times10^{-8}\times1.6\times10^{-19}\times8170000}{1.673\times10^{-21}}

v=31.25\ m/s

Hence, The velocity is 31.25 m/s and direction is toward west.

6 0
3 years ago
Other questions:
  • Environmental advantage of using plant oil
    13·1 answer
  • If F1 is the magnitude of the force exerted by the Earth on a satellite in orbit about the Earth and F2 is the magnitude of the
    11·1 answer
  • How does kinetic energy affect the stopping distance of a small vehicle compared to a large vehicle?
    11·1 answer
  • A 5-kg block(m1) is released (from rest) from the top of a 3.0-m high, frictionless incline. When the 5-kg block reaches the bot
    14·1 answer
  • What is a parallel universe, and could there potentially be ones that contain doppelgängers of everyone on Earth?
    12·1 answer
  • If a species experiences a helpful mutation, like camouflage, explain how that mutation would help the species to better survive
    15·1 answer
  • "She finished the sprint with the speed of a cheetah." This statement represents which of the
    10·1 answer
  • What is CHA-CHA-CHA.​
    6·1 answer
  • A transparent oil with index of refraction 1.15 spills on the surface of water (index of refraction 1.33), producing a maximum o
    10·1 answer
  • When light traveling in straight lines passes through an object that is curved like a lens, the light is ________ at different a
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!