Answer:
we conclude that:
If 4x - 6≠4, then 2x–5≠5 is the contrapositive of a conditional statement if 2x -5=5, then 4x-6=14.
Step-by-step explanation:
We know that the contrapositive of a conditional statement of the form "If p then q" is termed as "If ~q then ~p".
In other words, it is symbolically represented as:
' ~q ~p is the contrapositive of p q '
For example, the contrapositive of "If it is a rainy day, then they suspend the match" is "If they do not suspend the match, then it won't be a rainy day."
Given
p: 2x -5=5
q: 4x-6=14
As the contrapositive of a conditional statement of the form "If p then q" is termed as "If ~q then ~p
Thus, we conclude that:
If 4x - 6≠4, then 2x–5≠5 is the contrapositive of a conditional statement if 2x -5=5, then 4x-6=14.
See attached PDF. (The censor thinks there are some unseemly words in there.)
Answer:
12 two times or 4 eight times
<h3>
Answer: 8 = g/3</h3>
Explanation:
When translating word problems into equations, the word "is" often means "equal sign"
The term quotient is the result of a division problem. So "quotient of g and 3" means "g divided by 3" or g/3.