<h3>
Answer:</h3>
1000 g CCl₄
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.93 × 10²⁴ molecules CCl₄
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of C - 12.01 g/mol
Molar Mass of Cl - 35.45 g/mol
Molar Mass of CCl₄ - 12.01 + 4(35.45) = 153.81 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
1003.77 g CCl₄ ≈ 1000 g CCl₄
Answer:
9.63 L.
Explanation:
Hello,
In this case, the undergoing chemical reaction is:

So the consumed amounts of hydrochloric acid and bromine are the same to the beginning based on:

In such a way, the yielded moles of hydrobromic acid and chlorine are:

Thus, the volume of the sample, after the reaction is the same as no change in the total moles is evidenced, that is 9.63L.
Best regards.
I think the answer would be Ionic sodium phosphate (Na3PO4) because it has the greatest boiling point elevation.
Answer:
0.35 atm
Explanation:
To solve this problem, we use Boyle's Law:
, where P is the pressure and V is the volume.
Here, V_1 = 0.355 L, P_1 = 1.0 atm, and V_2 = 0.125 L. So, just plug these values into the equation:
(1.0) * (0.355) =
* (0.125) ⇒
≈ 0.35 atm
Thus, the pressure is 0.35 atm.
Hope this helps!
Answer:
Most divergent plate boundaries are underwater and form submarine mountain ranges called oceanic spreading ridges. While the process of forming these mountain ranges is volcanic, volcanoes and earthquakes along oceanic spreading ridges are not as violent as they are at convergent plate boundaries.
Explanation: